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We look at general brane worlds in six-dimensional Einstein-Gauss-Bonnet gravity. We find the
general matching conditions for the brane world, which remarkably give precisely the four-dimensional
Einstein equations for the brane, even when the extra dimensions are noncompact and have infinite
volume. Relaxing regularity of the curvature in the vicinity of the brane, or having a thick brane, gives
rise to an additional term containing information on the brane’s embedding in the bulk. We comment on
the relevance of these results to a possible solution of the cosmological constant problem.
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The brane world paradigm, or the idea that our universe
might be a slice of some higher dimensional spacetime,
has proved a compelling alternative to standard Kaluza-
Klein (KK) methods of having more than four dimen-
sions. Briefly, in contrast to KK compactifications, which
have small and compact extra dimensions, brane worlds
can have large, even noncompact, extra dimensions,
which have potentially important experimental conse-
quences [1,2]. We do not directly see the extra dimensions
since we are confined to our brane world; rather, their
presence is felt via short-scale corrections to Newton’s
law, in some cases large scale modifications of gravity,
and as a means of generating the hierarchy between the
weak and Planck scales. Although being confined to a
slice in spacetime might seem odd, such confinement is in
fact a common occurrence. The early brane world scenar-
ios [3], for example, used zero modes on topological
defects, and in string theory we have confinement of
gauge theories on D-branes.

Formally, the brane world is a submanifold of the
spacetime manifold and can have any number of codi-
mensions—the number of extra dimensions—up to a
maximum of 6/7 for string/M-theory. By far, the best
investigated and understood brane world scenario is the
codimension 1 case, or a toy five-dimensional example
motivated by the Horava-Witten compactification of
M-theory [4]. This range of models, based on the seminal
work of Randall and Sundrum (RS) [2], has all the
features one requires: Einstein gravity at some scale
with calculable modifications, well-defined cosmology
asymptoting standard cosmology at late times, and has
the additional allure of exhibiting directly aspects of the
gravity/gauge theory (adS/CFT) correspondence.

Far less well understood are higher codimension
brane worlds. Although the pioneering work on resolving
the hierarchy problem took place within the context of
higher codimension, empirical models lack the gravita-
tional consistency of the RS scenarios. Attempts to in-
clude self-gravity have met with some success in
codimension 2 [5-7], but for codimension 3 or higher,
the situation seems to be more problematic [8,9].
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Codimension 2 brane worlds offer also some interest-
ing properties that can be exploited to attack the cosmo-
logical constant problem [7], but one drawback is that, in
contrast to codimension 1, we appear to be very restricted
in our allowed brane energy momenta. Typically, a brane
in its ground state has a very special energy-momentum
tensor, which is isotropic and has the property that
energy = tension. If we wish to have any matter on the
brane, then we require a varying energy to tension ratio.
However, as pointed out by Cline et al [10] for cosmo-
logical branes, this is inconsistent with some basic mini-
mal assumptions about the nature of the brane world.
Namely, it causes singularities in the metric around the
brane world, necessitating the introduction of a cutoff and
hence introducing questions of model dependence.

In this Letter we suggest that the solution to the appar-
ent sterility of codimension 2 brane worlds might lie in
the Gauss-Bonnet term. This is a term that can be added to
the action in D > 4 (it is a topological invariant in 4D),
which is quadratic in the curvature tensor but has the
well-known property that the equations of motion de-
rived from it remain second order differential equations
for the metric. In fact, since O(R?) corrections to the
Einstein-Hilbert Lagrangian do arise in the low energy
limit of string theory, the inclusion of this type of term
could be regarded as mandatory if one wants to embed
any brane world solution into string/M-theory.
Fluctuations around a flat background for this model
were studied in [11], and the conclusions obtained are
compatible with the ones presented in this Letter at the
linearized level.

In trying to derive effective Einstein equations on the
brane, it is worth comparing and contrasting with co-
dimension 1. Recall that for codimension 1 there is a
single normal to the brane world, hence a single direction
from the brane world. For a general submanifold of
codimension 2, there are now two normals, and for a
regular submanifold we again have a well-defined co-
ordinate patch around it defined by the Gauss-Codazzi
formalism. (This method was used to derive effective
actions of topological defects [12].) The problem is that
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Gauss-Codazzi formalism requires some minimal regu-
larity of the metric, and this is no longer the case for an
infinitesimal brane world in codimension 2 — the situ-
ation is even worse for codimension 3 and higher. Briefly,
there is no well-defined “‘thin brane world”’ limit for the
Einstein equations [13], or alternatively, for the conical
deficit, it is not possible to put two normals at the location
of the deficit, which have a well-defined inner product —
it depends on whether you measure the outer or inner
angle. In order to derive gravity on the brane therefore, we
instead use a coordinate system that is defined in the
vicinity of the brane world, and in which the effect of
the brane formally appears as a delta function.

We assume that our brane world has a nonsingular
metric, §,,(x*), which is continuous in the vicinity of
the brane world. The coordinates x* label the brane world
directions, and we will use greek indices to indicate brane
world coordinates. We now take the set of points at a fixed
proper distance from a particular x* on the brane, this
will have topology S', and we label these points by x*,
their proper distance, r, from x*, and an angle 6, which
without loss of generality we will take to have the stan-
dard periodicity of 27r. This method provides a full
coordinatization of spacetime in the vicinity of the brane
world, and will be unique within the radii of curvature of
the brane world. There are two remaining issues. One is
that there is of course some ambiguity in the labeling of 6,
which is equivalent to the choice of connection on the
normal bundle of the brane world; however, for simplicity,
we will assume that 6 is chosen to make this connection
vanish (in particular, this means we assume that the brane
world is not self-intersecting). The second issue relates to
the form of the bulk spacetime metric, which we will now
assume has axial symmetry; i.e., d, is a Killing vector.
This ansatz simplifies the bulk metric, and it is analogous
to the assumption of Z, symmetry in the codimension 1
scenarios. The metric therefore can be seen in these
coordinates to take the general form:

ds* = g,,(x, r)dxtdx” — L*(x, r)d6*> — dr*. (1)

In order to obtain the brane world equations, we now
expand the metric around the brane:

L(x, r) = Bx)r + O(r?), (2)

etc. For values of 8 # 1, we have a conical singularity at
r = 0, which is interpreted as being due to a delta-func-
tion brane world source. Strictly speaking, at least in
Einstein gravity, we cannot define a delta-function source
in terms of a zero-thickness limit of finite sources [13].
Rather, we deduce the existence of the delta function in
the Riemann tensor from the holonomy of a parallelly
transported vector around the source. However, as the
equations of motion make perfect sense with the delta
function being encoded in a notional discontinuity of the
radial derivatives of the metric at » = 0, we follow the
standard procedure in this Letter of defining L'(x, 0) = 1,
guvy(x, 0) = 0, in order to give rise to the required distri-
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butional behavior of the curvature in the gravitational
equations (a prime denotes derivative with respect to r).

Therefore, for a general brane world, the problem we
wish to solve is that of finding gravitating solutions that
include the effect of a general brane energy-momentum
tensor

T,,(x) 20 o>
Torw = L wr\X) 207 3
MN ( 0 0 (3)

(upper case latin indices run over all the dimensions). In
particular, we will be interested in the relation between
the 4D induced metric on the brane, g,,(x, 0) = §,,(x),
and the brane energy-momentum tensor, T, (x). It is this
relation which determines the nature of the gravitational
interactions that a ‘““brane observer” would measure.

Our starting point is the Einstein-Gauss-Bonnet (EGB)
equation:

M (Gyx + Hyn) = Tun + Suns 4
where
1
Gun = Run — EgMNRy (5)

and the Gauss-Bonnet contribution is given by

1
Hyn = a[z gun(R? — 4RPCRp, + RPSTRp 1)
— 2RRyy + 4Ry pRE + 4RE .\ R
- ZRMQSPRI%SP i|, (6)

with « a parameter with dimensions of (mass) 2. Sy is
the bulk energy-momentum tensor, which we will not
specify here other than to assume that it has no delta-
function contributions.

If Eq. (4) is to be satisfied, there must be a singular
contribution to the left-hand side (Lh.s.) of this equation
with the structure ~ 2% As we have already discussed,

L
such a contribution can arise from terms that contain

" S

L”_ -1 - B)% + (nonsingular part), @)
2 )

9r8ur — a,gwg + (nonsingular part). 8)

In Einstein gravity, these latter terms are zero. However,
since they could in principle be nonzero, we will retain
them from now.

We must therefore set the delta-function contribution
equal to the brane energy-momentum tensor in order to
solve the equations of motion. After some calculation,
one obtains that the only singular part of the Lhs. of
Eq. (4) lies in the wu, v directions and is

1z

1 o
- f|:g/.u/ + 4a<R/.LI/(g) - Eg,u,vR(g)>i|+ Zar(LIW/.LV),
€))
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where W ,,, is defined as the following combination of first
derivatives of the four-dimensional metric:

W,uv = g/\a—arg,u/\argua' - g)urarg)m'argp,v
1
+58ul(€'79,810)* — 8"78700,8159,80, )
(10)
We can now use the properties
L" 5(r)
4‘*-( - B)— Y]
3,(L'W,,) 5(r)
L IB ,u,Vlr=0+T ) (12)
. . .. . 8(r)
to obtain the matching condition by equating the <~

terms of Eq. (4). This yields

2mr(1 — ,B)Mi[gw +4aG,, + aT— fﬁWW} Ty
(13)
where G is the 4D Einstein tensor for the induced

metric, gw,, and W =W, l—o+

This is our main result: the gravitational equations of a
brane world observer are the Einstein equations plus an
extra Weyl term, WM,,, which depends on the bulk solu-
tion. This term is reminiscent of the Weyl term in the
codimension 1 brane worlds [14], which gives rise to the
corrections to the Einstein equations on the brane.
Roughly speaking, the brane world equation is obtained
by taking the components of the full Einstein equations
parallel to the brane, with the perpendicular components
giving some information on the nature of the Weyl term.
Depending on the symmetries present, in some cases
(cosmology being the most physically interesting) we
can completely determine the bulk metric, and hence
Weyl corrections. For codimension 2, the perpendicular
components of the bulk equations do lead to constraints
that we discuss presently; however, these now no longer
fix the bulk metric exactly, not even for the highly sym-
metric and special case of brane world cosmology with

!/
vo _ 9

L

-8

with similar constraints from the O(1/r) terms of the
(u, v) and (r, r) equations (though these are somewhat
more complicated and not particularly illuminating). In
this case we find that, in general, no simple restriction can
be placed on the solution, and, in particular, the deficit
angle B need no longer be constant.

However, it is important to note that some components
of the Ricci curvature tensor (and scalar) are now diver-
gent once we allow 6,gW|0+ # 0. For example,

/

1L
R, =-—20

9r8uv
4+ ...="°F 4 O(1
#r 2L 2r o)

r8uv A7)
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Einstein gravity in the bulk. Let us now investigate the
consequences of (13), in particular, the consistency of
the extra Weyl term, which arose as a result of allowing
a discontinuity in the derivative of the parallel brane
world metric.

A natural first check is to take the @ — O limit to
recover the Einstein case. Then Eq. (13) reduces to

A

2m(1 = BIMg,, =T,, (14)
Although this looks like it is not possible to satisfy this
matching condition unless the brane energy-momentum
tensor is proportional to the induced metric, in fact, we
have not yet determined whether 3 is a constant. A non-
constant 8 would correspond to a varying deficit angle
and is not determined by the brane world equations alone.
We must supplement the brane world equations with the
bulk equations normal to the brane world, and since we
wish to make as few assumptions as possible about the
bulk in this Letter, we will simply look at the divergent
O(1/r) terms in the Einstein equations near the brane, as
these cannot be cancelled by any regular bulk Sy;y. These
leading terms for the (u, »), (r, r), and (u, r) components
give

[L”] L/
Suv I - i[argpw - g,uvgpa-argptr] =0
15
L' oy —0 BML' —0 (15)
Zg rng' - Y L - Y

where [L'"] stands here for the smooth part of the second
derivative as we approach the brane. We now see directly
that 8 must indeed be constant, and that 92L|,_,+ =
and 9,8 er:m = (0. We now confirm the observation of
Cline et al. [10]: that Einstein codimension 2 brane worlds
must have an energy momentum proportional to their
induced metric, and their gravitational effect is to pro-
duce a conical deficit in the bulk spacetime.

In Gauss-Bonnet gravity, however, the situation is not
so simple, since all these equations get corrections pro-
portional to a and one cannot rule out the existence of
solutions with WM,, # 0. The O(1/r) terms in the (u, r)
components of the EGB equations, for example, are

(16)

Ll
:|+2afgyg[arg,uva0pr - argerpMpr] =0,

near the brane. In a realistic situation, we could argue
that a brane would have finite width, which could act
as a cutoff for the curvature; hence all our results would
still be valid provided this cutoff is sufficiently large so
that the curvature is still small compared to M2, the
six-dimensional Planck mass squared. In this smooth
case, we can use the Gauss-Codazzi formalism and the
6 independence of the metric to write

1
W K Kw)\ KK!MV g,UJ/[Kz 1)\0'] (18)
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where K, are the two extrinsic curvatures (i = 1, 2) for
each of the two normals. We therefore have the interpre-
tation of W,, as a geometric correction to the Einstein
tensor due to the embedding of the brane world in the bulk
geometry. The interpretation is then that the Einstein
equations acquire additional embedding terms, which
unfortunately cannot be deduced from the brane world
geometry alone.

The physical relevance of terms, which lead to diver-
gent curvatures and hence tidal forces in the vicinity of
the brane world, is, however, questionable. If M, is of
order the (inverse) brane width, or if we wish to have a
truly infinitesimal brane, then we are forced to conclude
that, for consistency, we cannot stop at the GB curvature
corrections but must include all higher order curvature
corrections, thus entering a nonperturbative regime of
which we can say nothing. We are therefore forced to
impose d,g,, = 0, and Eq. (16) tells us that the deficit
angle B is again constant and the equation for the induced
metric (13) remarkably takes the form of purely four-
dimensional Einstein gravity:

N 1 A 1
G, =—————T,,——8,,. 19
#r8m(1 — BaMi M 4da S (9

We can read off our four-dimensional Planck mass as
M3 = 87(1 — B)aMs, (20)

and we note the presence of an effective four-dimensional
cosmological constant:

Ay =T, —27(1 — BM, (21)
where T, is the bare brane tension:
Tw=To8uy + 8T, (22)

Of course the splitting of the energy-momentum tensor in
this manner is potentially arbitrary, however, for a cos-
mological brane 87, — 0 as t — oo, and we can simply
posit that 6T,, — 0 as either # or |[x| — oo as being a
necessary requirement of a brane world, thus rendering
(22) unambiguous.

Interestingly, the Einstein relation between B and the
brane tension, namely, T, = 27(1 — B)M?, no longer
holds for GB gravity — we can specify the conical deficit
and the brane tension independently, the only caveat
being that if the Einstein relation does not hold, then
we have an effective cosmological constant on the brane.

To sum up, we have found the equations governing the
induced metric on the brane for a codimension 2 brane
world. We have shown that adding the Gauss-Bonnet term
allows for a realistic gravity on an infinitesimally thin
brane, which remarkably turns out to be precisely four-
dimensional Einstein gravity independent of the precise
bulk structure, the only bulk dependence appearing via
the constant deficit angle A in the definition of the four-
dimensional Planck mass M3 = 4aAM. Since Einstein
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gravity appears quite generically, our model provides a
novel alternative realization of the infinite extra dimen-
sions idea of Dvali et al [15]. Indeed, we could modify
our model by adding brane world Ricci terms (which can
be motivated via finite width corrections to the brane
effective action [12]), which would give the same form
of the brane world gravity equations, and simply renor-
malize the four-dimensional Planck mass.

We also showed that it was possible to obtain a devia-
tion from Einstein gravity via a nonzero W#,,. In turn,
this allows a variation of the bulk deficit angle and there-
fore the effective brane cosmological constant. In this
case, one has to either perform a smooth regularization
of the brane by taking some finite width vortex model or
accept that the infinitesimally thin brane world has a
nonperturbative regime in the neighborhood of the brane.
Nevertheless, it seems to be a very appealing feature
towards a possible solution of the cosmological constant
problem. One could envisage a situation in which the
system is in a nonperturbative phase in which the cosmo-
logical constant can vary and relax itself dynamically to
a perturbative state in which the induced gravity on the
brane is four-dimensional Einstein gravity and with a
very small cosmological constant (an infinite flat super-
symmetric bulk might, for instance, lead to this situation
[16]). Because of the unbounded curvature near the brane
when this situation is violated, it seems plausible that
once the system reaches that configuration it would prefer
to remain there.

[1] N. Arkani-Hamed et al, Phys. Lett. B 429, 263 (1998);
Phys. Rev. D 59, 086004 (1999); 1. Antoniadis et al,
Phys. Lett. B 436, 257 (1998).

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999); Phys. Rev. Lett. 83, 4690 (1999).

[3] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B
125, 139 (1983); Phys. Lett. B 125, 136 (1983);
K. Akama, Lect. Notes Phys. 176, 267 (1982).

[4] P. Horava and E. Witten, Nucl. Phys. B475, 94 (1996).

[5] R. Sundrum, Phys. Rev. D 59, 085010 (1999).

[6] A.G. Cohen and D.B. Kaplan, Phys. Lett. B 470, 52
(1999); R. Gregory, Phys. Rev. Lett. 84, 2564 (2000).

[71 J.W. Chen et al, J. High Energy Phys. 09 (2000) 012;
S.M. Carroll and M.M. Guica, hep-th/0302067;
I. Navarro, J. Cosmol. Astropart. Phys. 309 (2003) 004;
Classical Quantum Gravity 20, 3603 (2003);
Y. Aghababaie et al, Nucl. Phys. B680, 389 (2004).

[8] C.Charmousis et al, J. High Energy Phys. 05 (2001) 026.

[9] T. Gherghetta et al., Phys. Lett. B 491, 353 (2000).

[10] J. M. Cline et al., J. High Energy Phys. 06, 048 (2003).
[11] O. Corradini et al., Phys. Lett. B 521, 96 (2001).

[12] R. Gregory, Phys. Rev. D 43, 520 (1991).

[13] R. Geroch and J. Traschen, Phys. Rev. D 36, 1017 (1987).
[14] T. Shiromizu et al, Phys. Rev. D 62, 024012 (2000).
[15] G.R. Dvali et al., Phys. Lett. B 485, 208 (2000).

[16] E. Witten, hep-ph/0002297.

221601-4



