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Free-energy simulation methods are applied toward the calculation of cluster integrals that appear in
diagrammatic methods of statistical mechanics. In this approach, Monte Carlo sampling is performed
on a number of molecules equal to the order of the integral, and configurations are weighted according
to the absolute value of the integrand. An umbrella-sampling average yields the value of the cluster
integral in reference to a known integral. Virial coefficients, up to the sixth for the Lennard-Jones
model and the fifth for the SPCE model of water, are calculated as a demonstration.
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acter of a molecular simulation performed on the mole-
cules represented in the integral, and there are two key

general integration must be performed also over all rota-
tional and internal degrees of freedom available to each
Statistical mechanical theories of fluids aim to describe
the behavior of the bulk phase beginning from a model
for the intermolecular interactions. The most successful
of these theories, such as the virial treatment of gases and
the Percus-Yevick theory for condensed phases, are built
upon an enumeration of ‘‘cluster integrals’’ taken over
configurations of a fixed set of molecules [1]. One of the
fundamental obstacles to the systematic improvement
(and in some cases even the application) of theories based
on cluster integrals is the inability to compute the inte-
grals they represent for any but the simplest cases. Thus it
has proved feasible to compute only up to the fifth virial
coefficient for simple spherically symmetric potentials
such as the Lennard-Jones (LJ) model [2–5], and the
fourth virial has just been calculated for a cylindrically
symmetric molecule [6], while only the third virial co-
efficient has been computed for slightly more complex
potentials, such as water [7]. Up to the eighth virial
coefficient has been computed for hard spheres [8], but
this is an exceptional case that benefits greatly from the
simple form and short range of the hard-sphere potential.
Many of the successes in calculating difficult cluster
integrals have required much effort to examine the nature
of the integral, exploiting all possible symmetries, and
applying analytical treatments such as expansions in
Legendre polynomials. On the other hand, second virial
coefficients can be calculated routinely for almost any
intermolecular potential, even large molecules such as
alkanes or potentials described through ab initio treat-
ments. The second virial coefficient is one of the very few
routinely computable quantities that rigorously connects a
molecular model to bulk-phase behavior, and conse-
quently it plays an important role in developing and
assessing molecular models.

In this Letter, we present a very simple but general
method to calculate cluster integrals. The approach is
suitable for integrals of any order, and can be applied to
potentials of any complexity. The method has the char-
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ideas in its application to cluster integrals. First, we
generate the molecule configurations using Metropolis
Monte Carlo (MC) [9] with importance sampling of
configurations based on the magnitude of the interactions
represented in the cluster integral. Second, we aim to
evaluate the ratio of the desired cluster integral to a
known reference integral, and do not attempt to evaluate
the cluster-integral directly. In taking this approach we
can then bring to bear a powerful array of techniques that
have previously been developed for the calculation of
free-energy differences by molecular simulation [9].
We propose ‘‘Mayer sampling’’ as the name given to
this technique of computing cluster integrals using
importance-sampling and free-energy methods. There
are many variations and applications that can be pursued
from this basic approach. To fix ideas, in the present work
we focus on one particular problem: namely, the evalu-
ation of cluster integrals needed to calculate virial coef-
ficients from a molecular model [10]. We demonstrate by
calculating the sixth virial coefficient for the LJ model,
and the fourth and fifth virial coefficients for the SPCE
model of water [11], none of which have been reported
previously.

The cluster integral that gives the classical second
virial coefficient is [1,10]

B2�T� � �
1

2

Z
f12dr2; (1)

and for pairwise-additive potentials the third virial co-
efficient is

B3�T� � �
1

3

ZZ
f12f13f23dr2dr3: (2)

In the integrals fij � �exp��	uij� � 1� is the Mayer
function, where uij is the pair potential between mole-
cules labeled i and j, and 	 � �kBT�

�1 is the reciprocal
temperature in energy units. The formulas indicate inte-
gration over only the positions of each molecule, but in
2004 The American Physical Society 220601-1



P H Y S I C A L R E V I E W L E T T E R S week ending
4 JUNE 2004VOLUME 92, NUMBER 22
one. Higher-order coefficients are sums of cluster inte-
grals. For instance, the fourth virial coefficient B4�T� is a
sum of three types of 4-molecule cluster integrals, while
the fifth virial coefficient B5�T� is the sum of ten
5-molecule integrals.

Free-energy perturbation formulas are well suited for
evaluation of such integrals. The umbrella-sampling
method provides one such formula [9]

	�T� � 	o
	

	o
� 	o

h�=�i�
h�o=�i�

: (3)

We use 	�T� as the notation for a general cluster integral
or sum of integrals, with integrand (or sum of integrands)
��rn;T�; for example, if 	 is the third virial coefficient
B3, then � 	 f12f13f23. The angle brackets indicate the
‘‘ensemble-average’’ integral over all configurations and
orientations of the n molecules, and the subscript �
indicates that sampling is governed by the (normalized)
probability distribution ��rn;T�: hMi� 	

R
drnM�=R

drn�. The subscript ‘‘o’’ indicates a quantity for the
reference system. This idea generalizes an approach that
has emerged recently [12] for the evaluation of cluster
integrals in the bridge function.

There is considerable latitude available in the selection
of both the reference system and the sampling distribu-
tion ��rn�. We expect that one (or a combination) of two
choices commonly will be employed in selecting a refer-
ence system. In the first choice, the intermolecular poten-
tial or the temperature of the reference system differs
from that of the target system, but otherwise they corre-
spond to the same cluster integral (or sum of integrals).
Typically the reference system would be defined by the
hard-sphere potential, for which the cluster integral is
temperature independent and in many cases is known. In
the second choice, the intermolecular potential for the
target and the reference are the same, but each system is
given by different products of Mayer functions—they
correspond to different cluster integrals. This approach
can be used to relate more complicated, highly connected
cluster integrals to ones that are simpler and which can be
evaluated by other means.

Regarding the distribution �, the importance-
sampling approach suggests that it be given by the mag-
nitude of the target-system integrand, � � j��rn;T�j (the
absolute value must be used because � is negative for
some configurations). We have investigated several varia-
tions on this theme, and found that a particularly conve-
nient formulation is to select � as the absolute value of
the sum of all the cluster integrands in the desired virial
coefficient, with their appropriate weights. If we further
select � itself as the same cluster-integral sum, Eq. (3)
yields directly the virial coefficient. Moreover, the nu-
merator in Eq. (3) averages just the sign of the cluster
sum, and contributions to it are all �1. This feature is
helpful to understanding the performance of the calcula-
tion. The cluster-integral sum that gives the virial coef-
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ficients is known to suffer from large cancellations
between the different terms, which causes difficulty in
determining the virial sum precisely. If implemented as
described here, the present approach does not require the
addition of (large) positive and negative averages to
obtain their (small) sum. Instead we have found this
numerical problem to manifest itself in a different way:
at the conditions where this cancellation is most problem-
atic, the single average hsgn���ij�j as suggested here be-
comes very small. A simple probabilistic argument
indicates that the required amount of sampling will scale
inversely with the square of this average, so from the
value of this average we can get an indication of whether
we have performed sufficient sampling. This feature also
presents a clear target for the focus of future work that
aims to improve the performance of these calculations.

We have applied the methodology described here to
evaluate the second to the sixth virial coefficients for
the LJ model, and the second to fifth for the SPCE
potential for water (all classical). The calculations were
conducted as follows. MC sampling was performed for a
number of molecules equal to the order of the virial
coefficient being computed. Trials were attempted to dis-
place and (if appropriate) rotate the molecules.We found it
helpful to select a random number of molecules to perturb
in one trial (so, e.g., with equal likelihood, sometimes one
molecule is moved, sometimes two, etc., and sometimes
all of them are). Each trial was accepted with probability
min�1; �new=�old�, where � is defined as the absolute
value of the weighted sum of the cluster integrands
contributing to the calculated virial coefficient. The re-
sulting configuration contributed to the two averages in
Eq. (3). For the denominator in this equation, we defined
�o to be the ring cluster (of same order) for the hard-
sphere potential, for which 	o is known; we examined
several values of the hard-sphere diameter near the LJ �
(for the oxygen atom in the case of the water calculations)
and did not observe a significant effect on the results. The
value of a cluster for a given configuration was deter-
mined using all unique permutations of the labeling of the
molecules. Simulations sampled M � 107 to 109 configu-
rations, depending on the rate of convergence of the
averages. Step sizes for the trials were adjusted in a short
‘‘equilibration’’ period, before accumulating averages, to
achieve a 50% acceptance rate for trial moves; it is
important that this step size not be adjusted once averag-
ing is begun.

Results are presented in Tables I and II, respectively,
where they are compared to available literature data. The
coefficients B6 for LJ and B4 and B5 for water have not
previously been reported. Overall the data show very
good precision and agree well with the literature values,
although some discrepancies are present. Figure 1
presents the scaled standard deviation M1=2�B=jBj de-
scribing independent measurements of the virial coeffi-
cients using this method. For large M this quantity should
be independent of M, so from these data one can estimate
220601-2



TABLE I. Virial coefficients for the Lennard-Jones model as calculated using the Mayer-sampling method.a

T*
0.625 0.75 1.0 1.2 1.3 1.4 1.5 2 2.5 5 10

B2=b �5:75783 �4:17573 �2:53812 �1:83591 �1:58421 �1:37591 �1:20101 �0:62751 �0:31261 0:243 324 0:460 873
Litb �5:7578 �4:1759 �2:5381 �1:8359 �1:5841 �1:3758 �1:2009 �0:6276 �0:3126 0:2433 0:4609
B3=b

2 �8:2372 �1:79237 0:42992 0:59224 0:58812 0:56821 0:54331 0:437 038 0:381 004 0:315 079 0:28601
Litb �8:2355 �1:7915 0:4297 0:5924 0:5882 0:5683 0:5434 0:4371 0:3810 0:3151 0:2861
B4=b

3 �120:8220 �18:773 �0:269720 0:33855 0:31685 0:27014 0:22563 0:122 797 0:11311 0:13411 0:11562
Litb �121:08 �18:84 �0:2769 0:3359 0:3157 0:2695 0:2250 0:1228 0:1131 0:1341 0:1156
Litc �0:265 0:33866 0:31696 0:27005 0:22533 0:12333 0:134 151 0:115 591
Litd �120:558 87 �18:744 73�0:26810 0:316 93 0:270 17 0:225 48 0:122 85 0:113 14 0:134 12 0:115 59
B5=b

4 �212910 �182:6880 �2:773 0:0158 0:037560 �0:006490 �0:0333 �0:0111 0:03661 0:06301 0:038 945
Litb �2136:2 �185:9 �2:860 0:0150 0:0361 �0:0022 �0:0303 �0:0100 0:0365 0:0629 0:0390
Lite �2:767 0:0236 0:0379 0:0018 �0:0306 �0:0101 0:0363 0:0628 0:0390
B6=b

5 �18 8003000 �1360200 �151 �0:3520 �0:21940 �0:17460 �0:09660 0:018780 0:052840 0:02445 0:00891

aValues are reduced by the value of the hard-sphere second virial coefficient b � 2��3=3, and temperatures are given in LJ units,
T� � kT=", where � and " are the LJ size and energy parameters, respectively. Reported values represent averages from at least 4
independent calculations, each sampling at least 108 configurations. Subscripted digits represent the confidence limits (standard
error of the mean) for the rightmost digits of the value.
bReference [2].
cReference [3]; average of compressibility and pressure values, with error given as half their difference.
dReference [5].
eReference [4].
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the amount of sampling required to achieve a given frac-
tional precision in the measurement of a virial coefficient.
These results will provide a useful basis for comparison of
the effectiveness of variants of the proposed method as
they are developed—a lower value is of course better. The
figure and tables indicate that increased sampling is
required to get good precision when calculating higher-
order coefficients at lower temperatures. It is also
interesting to find that the anomalies of the critical point
are manifested in the calculation of these few-particle
averages, particularly for the Lennard-Jones system,
where we find a significant jump in the scaled standard
deviation near the critical temperature Tc.

We find that our results for water differ consistently
from the available literature values. The difference is in a
TABLE II. Virial coefficients for the SPCE model of wate

T(K
373 423 473 523

B2

�cm3=mol� �1804:94 �886:54 �518:91 �339:544
Literatureb �1856 �907 �529 �345
B3

�104 cm6=mol2� �10298 �104:52 �13:733 �0:8746
Literatureb �1070 �108 �14 �0:866
B4

�107 cm9=mol3� �24 3002000 �28510 3:3510 3:36940
B5

�1010 cm12=mol4� �13 70013000 �859500 �32:9150 �2:3230

aValues are reported using the format described in Table I.
bReference [7].
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direction that would indicate overrepresentation of low-
energy (attractive) configurations in the literature data,
but we do not have any independent means to resolve the
discrepancy in this direction. We can report that the
difference is not diminished by added sampling in our
calculations.

There are several points worth noting in respect to this
method. First, it is very important that the sampling
distribution � be selected such that it does not have small
values for configurations in which � or �oare non-
negligible. If this happens the averages seen in Eq. (3)
will have large contributions from configurations that are
rarely sampled. This problem is well known in free-en-
ergy perturbation calculations [13] (e.g., the failure of
particle deletion), and it is easily avoided. As a general
r [11] as calculated using the Mayer-sampling method.a

)
573 623 673 723 773

�239:1410 �177:154 �135:992 �107:1420 �85:965
�242 �179 �137 �108 �87

1:0761 1:1651 0:95306 0:73803 0:56743
1:11 1:19 0:974 0:752 0:578

1:12130 0:3583 0:1151 0:03775 0:00952

0:0620100 0:092020 0:039810 0:01846 0:0082020
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FIG. 1. Standard deviation of the measured virial coefficient
across several (4 to 10) independent runs each sampling M
configurations. Values are multiplied by M1=2, and divided by
the absolute value of the measured virial coefficient itself.
Abscissa is the temperature reduced by the critical-point tem-
perature for each model. Open symbols describe data for the LJ
model, and filled symbols are for SPCE water.
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rule, � should not have f bonds between molecules that
are not bonded in � and �o.

Second, the Mayer-sampling calculation differs from a
typical MC molecular simulation in a number of ways.
The simulation is conducted in free space, with no vol-
ume imposed, no periodic boundaries, and no artificial
truncation of the potential. Moreover, the molecules can
move right through each other, thereby eliminating the
main source of ergodic traps (steric repulsion) seen in
standard MC simulation.

Third, the technique is easily extended to other types
of systems, such as mixtures, or systems described by
non–pairwise-additive potentials. Application to mix-
tures is appealing because the dependence of the virial
coefficients on composition is known exactly, so the treat-
ment provides a route to thermodynamics that does not
rely on an empirical ‘‘mixing rule’’ for the composition
dependence. With respect to applications to other poten-
tials, we anticipate that some day it will be feasible to
apply this technique, and extensions of it, using ab initio
potentials computed on the fly, thereby permitting very
good estimation of many-body properties such as the
critical point from first-principles calculations.

Fourth, the calculations described here are perfectly
parallelizable. Independent MC simulations can be per-
formed for the same system, and the averages combined
to obtain a single result. There is no prospect or need for
more sophisticated parallelization approaches, such as
domain decomposition, because there are so few particles
sampled in a simulation. In this sense the calculation has
most assuredly been broken into its most elementary
computational unit, and moreover the combination of
elementary single-processor calculations is quite trivial.
220601-4
Finally, the particular methodology presented here
adapts just one of a range of well-established methods
for computing free energies by molecular simulation. The
formula given by Eq. (3) is an umbrella-sampling calcu-
lation. Other approaches, such as overlap sampling [14],
might prove worthwhile as an alternative for the calcu-
lation of cluster integrals. Density-of-states methods [9]
could also be considered, but we should point out that the
structure of the cluster integrands is such that the adop-
tion of these ideas for this purpose is not straightforward.
Additionally, advanced sampling methods, such as paral-
lel tempering (PT) [9], could be helpful in this applica-
tion. Although we did not pursue it here, it should be
straightforward to measure cluster integrals over a con-
tinuous range of temperatures with a single simulation, or
set of PT simulations. Clearly, there are many avenues and
applications to explore. The combination of Mayer sam-
pling with integral equation methods is a particularly
appealing prospect.

This work is supported by the U.S. Department of
Energy. Computational resources were provided by the
University at Buffalo Center for Computational Research.
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