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The theory of Förster resonance energy transfer is generalized for multichromophoric (MC) and
nonequilibrium situations. For the first time, it is clarified that the far-field linear spectroscopic
information is insufficient for the determination of the reaction rate and that distance dependence of
the rate can vary with the disorder and temperature. Application to a light harvesting complex LH2
reveals the important consequences of a MC structure.
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tive of FRET or its multipolar generalizations [6–8].
However, applications of existing single chromophoric

and A. Appropriate formulation of this assumption is
necessary for the following MC situation.
Recent advances in single molecule spectroscopy of
multichromophoric (MC) systems such as the light har-
vesting complex LH2 [1–3] strongly suggest that the
description of dynamical processes in these systems
have to be reexamined. The most important of these
dynamical processes is FRET (Förster resonance energy
transfer) which has become the biological ruler for the
20–100 �A range distance determinations in molecules
such as DNA [4] and proteins [5]. The original theory
of FRET [6–8], developed more than 50 years ago,
considered the transfer of electronic excitation energy
from a single chromophoric donor (D) to a single chro-
mophoric acceptor (A) (or to an ensemble of independent
A’s). Application of this theory to large MC systems
requires significant changes in the theory, some of which
have appeared in recent years by Sumi et al. [9,10] and
Scholes et al. [11,12]. These theories, however, are not
general enough to provide reliable guidance of experi-
ments in all possible situations. In this Letter, we present
such a generalization, discuss important new character-
istics of MC-FRET for the first time, and apply the theory
to an important energy transfer process in LH2.

In MC systems, D (and/or A) consists of multiple
chromophores, which are intimately coupled together to
form excitonic states. Light harvesting complexes [1–
3,13], proteins with multiple tryptophans nearby [8],
dendrimers [14], conjugated polymers [15], and quantum
dot arrays [16] have these characteristics. Therefore,
understanding the dynamics of excitation energetics in
MC systems is a crucial problem for quantitative descrip-
tion of photosynthetic light harvesting processes, for
structural determination of a broader range of protein
systems, and for better design of optoelectronic devices
based on nanostructured materials. By nature or design,
many MC systems have well-defined D and A sites, where
inter–D-A chromophore distances are larger than intra-D
and intra-A chromophore distances. Experimental data
[13–16] demonstrate that the energy transfer processes
in these systems exhibit rate behaviors which are sugges-
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theories to these MC systems can lead to significant errors
due to the fact that the D-A distances are not large enough
to justify point dipole or multipole approximation for the
transitions in D and A, and that the transfer involves more
than one pair of excitations or exciton states. Indeed, for
the energy transfer from the B800 unit to the B850 unit in
LH2 [13], experimental estimates of the rate are about 5–
10 times larger than the prediction of single chromo-
phoric FRET theory [13,17]. Mukai, Abe, and Sumi
(MAS) [9,10] and Scholes and Fleming (SF) [11,12]
independently attributed the discrepancy to contributions
from dark exciton states of B850. Our theory includes the
MAS-SF theory [9,12] as a limiting case, and we present
simulation results that uncover an important microscopic
feature of the B800 ! B850 energy transfer dynamics.

According to the single chromophoric FRET theory
[6–8], the energy transfer rate from D to A, assuming
immobile transition moments, is given by

kF �
J2

2� 	h2

Z 1

�1
d!ED�!�IA�!�; (1)

where J is the transition dipole-dipole coupling between
D and A, depending on the inverse third power of the D-A
distance, and

ED�!� �
Z 1

�1
dt e�i!theiH

e
Dt= 	he�iHg

Dt= 	hi�eD ; (2)

IA�!� �
Z 1

�1
dt ei!theiH

g
At= 	he�iHe

At= 	hi�gA ; (3)

where Hg
D (Hg

A) is the ground state Hamiltonian of D (A)
plus its environment, He

D (He
A) is the excited state

Hamiltonian of D (A) plus its environment, and h
 
 
i�eD
( h
 
 
i�gA) denotes averaging over �e

D (�g
A)—the canonical

density operator for He
D (Hg

A). The simple spectral overlap
expression in Eq. (1), a central feature of the theory for
spectroscopic rate determination, relies on the assump-
tion that no given degree of freedom couples to both D
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Let us consider MC systems where D and A consist of
Dj (j � 1; . . . ; ND) and Ak (k � 1; . . . ; NA). We suppose
the following forms of exciton Hamiltonians:

He
D;0 �

XND

j�1

�Dj
jDjihDjj �

X
j�j0

�D
jj0 jDjihDj0 j; (4)

He
A;0 �

XNA

k�1

�Ak
jAkihAkj �

X
k�k0

�A
kk0 jAkihAk0 j; (5)

where �Dj
��Ak

� is the energy of the excitation state jDji
(jAki), and �D

jj0 (�A
kk0) is the electronic coupling between

jDji and jDj0 i (jAki and jAk0 i). All other degrees of free-
dom except for the above electronic states will be termed
as bath hereafter. If each jDji is coupled to a bath operator
BDj

, the total Hamiltonian for excited D, He
D � He

D;0 �PND
j�1 BDj

jDjihDjj �Hg
D. Likewise, the total Hamiltonian

for excited A, He
A � He

A;0 �
PNA

k�1 BAk
jAkihAkj �Hg

A. The
assumption that no given bath mode couples to both D
and A can be imposed by the following conditions:
�Hg

D;H
g
A� � �Hg

D; BAk
� � �Hg

A; BDj
� � 0. Otherwise, BDj

,
BAk

, Hg
D, and Hg

A are arbitrary. For the present MC situ-
ation, ND � NA terms contribute to the coupling
Hamiltonian, Hc �

PND
j�1

PNA
k�1 Jjk�jDjihAkj � jAkihDjj�,

where Jjk is the transition dipole-dipole interaction
between Dj and Ak. Even if each jk pair satisfies all
the requirements for the use of Eq. (1), the incoherent
sum of the analog of Eq. (1) for each pair is not in general
valid because it neglects intra-D and intra-A quantum
coherence.

We derive a MC generalization of Eq. (1), which also
accounts for nonequilibrium effects, by adapting to the
MC system described above a formalism that has recently
been developed for a single chromophoric situation [18].
Initially (for t < 0), the total system is in the ground state
canonical equilibrium represented by �g

D�
g
A. If impulsive

radiation that selectively excites D is applied at t � 0, the
total density operator becomes ��0� � jDêeihDêej�

g
D�

g
A,

with jDêei � N êe 

P

j�Dj
jDji, where N is a normaliza-

tion constant, êe is the polarization vector of the radiation,
and �Dj

is the transition dipole of jDji. The probability
for the acceptor molecule to be excited at time t is then
given by PA�t� �

PNA
k�1 TrfhAkje

�iHt= 	h��0�eiHt= 	hjAkig,
where Tr denotes the trace over all the bath degrees of
freedom and H � He

D �He
A �Hc.

Expanding PA�t� up to the second order of Hc, taking
its time derivative, and employing the identity
�
P

kjAkihAkj; H
g
D �He

A� � 0, we obtain

kMC�t��
X
j0j00

X
k0k00

2Jj0k0Jj00k00

	h2

�Re

�Z t

0
dt0TrfhAk0 je

�i�Hg
D�He

A��t�t0�=	hjAk00 ihDj00 j

�e�i�He
D�Hg

A�t
0=	h��0�ei�H

e
D�Hg

A�t=	hjDj0 ig

�
: (6)
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We define a matrix IA�!� with the following components:

Ik
0k00
A �!� �

Z 1

�1
dt ei!t

� TrAfe
iHg

At= 	hhAk0 je
�iHe

At= 	hjAk00 i�
g
Ag; (7)

where TrA denotes the trace over all the bath degrees of
freedom for A. Inserting the inverse Fourier transform of
Eq. (7) into Eq. (6), one can obtain the following compact
expression for the MC and nonequilibrium FRET [19]:

kMC�t� �
X
j0j00

X
k0k00

Jj0k0Jj00k00

2� 	h2

Z 1

�1
d!Ej00j0

D �t; !�Ik
0k00
A �!�; (8)

with

Ej00j0

D �t;!��2Re

�Z t

0
dt0e�i!t0TrDfe�iHg

Dt
0=	hhDjj

�e�iHe
D�t�t0�=	hjDêeihDêej�

g
De

iHe
Dt=	hjDj0 ig

�
;

(9)

where TrD denotes the trace over all the bath degrees of
freedom for D. Within the cumulant approximation
and in the absence of back reaction, PA�t� � 1� PD�t� �
1� e�

R
t

0
d�kMC���.

Equation (8) is the major result of the present Letter,
and includes other existing theories as limiting cases. For
example, the single chromophoric nonequilibrium theory
[18] is recovered when ND;NA � 1. The stationary
MC-FRET expression is obtained from Eq. (8), taking
the limit t ! 1, and assuming the ergodicity,
limt!1e�iHe

D�t�t0�= 	hjDêeihDêej�
g
De

iHe
D�t�t0�= 	h � �e

D, in
Eq. (9). The resulting expression is

kMC
F �

X
j0j00

X
k0k00

Jj0k0Jj00k00

2� 	h2

Z 1

�1
d!Ej00j0

D �!�Ik
0k00
A �!�; (10)

where we have defined a matrix ED�!� with components

Ej00j0

D �!� �
Z 1

�1
dt e�i!t

� TrDfe�iHg
Dt= 	hhDj00 jeiH

e
Dt= 	h�e

DjDj0 ig: (11)

The rate expression derived by Sumi [10] is equivalent to
Eq. (10). Additional approximations for some quantum
coherence terms lead to the expression of MAS-SF [9,12].
New features become notable in the MC-FRET, according
to Eq. (10), even at the stationary limit.We discuss the two
most important issues [(i) and (ii) below].

(i) Information on the far-field linear spectroscopic
line shape is insufficient for the determination of the
MC-FRET rate in general. The reason is that the far-field
emission and absorption spectra, even in the absence
of ensemble disorder, are given by Eêe

D�!� �
P

j0;j00 �êe 

�Dj0

��êe 
 �Dj00
�Ej0j00

D �!� and IêeA�!� �
P

k0;k00 �êe 
 �Ak0
��êe


�Ak00
�Ik

0k00
A �!�, where �Dj

and �Ak
, respectively, are tran-

sition dipoles of jDji and jAki. Except for dimeric D and
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FIG. 1 (color online). (a) Transition dipoles of D, A�, and A�.
All the vectors and coordinates are in the same plane.
(b) Values of % � kMC

F R6=�"2
D"

2
A� vs R, for Cases I and II, at

kBT � 0:1 (LT) and kBT � 1 (HT). (c) Comparison of the
expression of MAS-SF with Eq. (10), for Case II at kBT � 0:1.
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A, these weighted sums (three or less terms in each case)
cannot convey the full information on ED�!� and IA�!�
necessary for the calculation of Eq. (10). Nonlinear spec-
troscopic experiments [12] or theoretical data based on,
e.g., semiempirical calculations [20] or time dependent
density functional approaches [21], can in principle be
used to obtain the missing information, but, in practice,
they are not definitive. Whether a near-field probe method
can be developed for general determination of the MC-
FRET rate, through its capability to control other spec-
troscopic variables beyond polarization vectors, is an
interesting issue to pursue.

(ii) The distance dependence of MC-FRET can vary
with disorder and temperature. This temperature varia-
tion should be taken into account when temperature de-
pendent structural changes of a MC system are studied by
FRET. The reason becomes clear considering that each
coefficient of Jj0k0Jj00k00 in Eq. (10) depends on the disorder
and temperature in a different manner. Stated more physi-
cally, the disorder affects the spatial and energetic nature
of exciton states, and temperature alters the relative pop-
ulations of different exciton states and their mutual
coherence. Therefore, effective ‘‘sizes’’ of respective ex-
citons in D and A, which determine the distance depen-
dence, vary with a specific realization of the disorder and
temperature. For an illustration, we consider the follow-
ing model of single chromophoric D and dimeric A. The
zeroth order exciton Hamiltonians are He

D;0 � �DjDihDj
and He

A;0 � ��jA�ihA�j � ��jA�ihA�j � ��jA�ihA�j �
jA�ihA�j�. The total exciton Hamiltonians including
baths are He

D � He
D;0 � BDjDihDj �Hg

D and He
A �

He
A;0 � B�jA�ihA�j � B�jA�ihA�j �Hg

A. All the bath
modes are represented by harmonic oscillators such that
Hg

D �Hg
A �

P
n 	h!n�b

y
nbn � 1=2�. The coupling terms

are BD �
P

n 	hgnD�bn � byn �, B� �
P

n 	hgn��bn � byn �,
and B� �

P
n 	hgn��bn � byn �. The spectral densities are

given by
P

n!�!�!n�g2nD � 0:1�!� 0:5!2=!c�e�!=!c

and
P

n!�!�!n�g2n� �
P

n!�!�!n�g2n� � 0:5�!�
0:5!2=!c�e

�!=!c . Each mode is coupled to a single ex-
citation state only. The magnitudes of transition dipoles
are denoted as "D, for D, and "A, for A� and A�.
Figure 1(a) shows the orientations of these transition di-
poles. In all the calculations, we set # � �=4, and use
units where 	h � !c � d � 1. The refractive index is
assumed to be unity, and the intra-A electronic interaction
� is calculated assuming "2

A � 1=2. We consider two
energetic situations, �D � 2 � �� � �� (Case I), �D �
2 � �� � 1 � �� � 1 (Case II), and, for each case, two
values of temperature, kBT � 0:1 (LT) and kBT � 1
(HT). The MC-FRET rate from D to A is calculated
employing Eq. (10), where ED�!� is determined by nu-
merical fast Fourier transform, and calculation of IA�!�
is made by a second order quantum master equation
approach [22]. Figure 1(b) shows the values of % �
kMC
F R6=�"2

D"
2
A� with the variation of R. The deviation

from 1=R6 behavior in each case demonstrates breakdown
218301-3
of dipole approximation as has been shown to be typical
for many MC systems [11]. The main point of this calcu-
lation, however, is that the manner of deviation indeed
depends on a specific realization of disorder and tempera-
ture as stated above.

While the original rate expression of Sumi [10] is
equivalent to Eq. (10), ensuing applications by him and
MAS [9,10] assumed that ED�!� and IA�!� are diagonal
in the excitonic bases—the sets of eigenstates of He

D;0 and
He
A;0. SF [12] made the same assumption. Since Eq. (10) is

invariant with the choice of basis set, the excitonic bases
of D and A can always be used for the rate expression.
However, in general, ED�!� and IA�!� are nondiagonal
even in the excitonic bases because He

D (He
A) does not

commute with He
D;0 (He

A;0). Therefore, the expression of
MAS-SF [9,12], which neglects coherence terms in the
excitonic bases, is valid only when the exciton-bath cou-
plings are weak enough or diagonal in the excitonic
bases. We have compared the expression of MAS-SF
with Eq. (10) for the model of Fig. 1(a) at kBT � 0:1.
We have found that the approximation of MAS-SF is
accurate enough for Case I (not shown), but leads to
substantial error for Case II, as shown in Fig. 1(c). This
result demonstrates that consideration of all the coherence
terms is important, especially when the disorder is com-
parable to the exciton-bath coupling.

We now apply the present theory to the calculation of
the B800 ! B850 energy transfer rate within a single
LH2. For the B850 unit, with 18 bacteriochlorophylls
(BChls), we use an exciton-bath Hamiltonian [22].
Only one BChl is considered in the B800 unit [23].
Figure 2(a) shows the distributions of rates at kBT �
10 cm�1, determined from an ensemble of 100 000
218301-3



0 1 2 3
k S

f

Eq. (10)
MAS-SF
Eq. (1)

0 1 2 3
t/S

f

-3

-2

-1

0

L
n[

P
D

(t
)]

av

Eq. (10)
MAS-SF
− kavt

Eq. (1)

(a) (b)

FIG. 2 (color online). (a) Distributions of FRET rates. The
scale factor Sf, assuming unit refractive index, is 109="4

BChl in
the units where 	h � c � 1 and 1 �A is the unit length. In
applying Eq. (1), a unit orientational factor and the shortest
BChlB800-BChlB850 distance were used. The vertical scale of the
distribution for Eq. (1) has been reduced by a factor of 7. (b)
Logarithmic populations. �PD�t��av � hexp��kt�i and kav �
hkMC

F i.
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realizations of disorder [24]. The calculated MC-FRET
rates are substantially larger than single chromophoric
FRET rates, and the degree of enhancement is comparable
to that observed experimentally [17]. The approximation
of MAS-SF, which neglects coherence terms in the exci-
tonic basis, turns out to be reasonably good for the present
system, but still results in a small underestimation of
Eq. (10). The distribution of the MC-FRET rates is very
broad. The resulting ensemble averaged population decay
of the excited D, assuming no back reaction [25], is far
from exponential. This is contrary to the previous as-
sumption of exponential decay [9,12], and indicates that
care should be taken in the interpretation of multiexpo-
nential fittings of pump-probe data. A future study that
includes nonequilibrium effects in Eq. (8) and employs
more systematic modeling of the B800 unit can provide
better quantitative explanation of relevant experimental
results.

In summary, we have presented a MC-FRET theory
applicable to a wide range of systems [1–3,8,13–16]. We
have addressed two important issues unique for MC sys-
tems, (i) and (ii), which should be recognized in any
spectroscopic attempt to determine the rate and to obtain
distance information. Application to the B800 ! B850
energy transfer process has provided new evidence for
very efficient and dispersive energy transfer dynamics
caused by the MC effects. The present Letter reveals
complexity hidden in a seemingly simple rate behavior,
even without consideration of other prominent issues such
as common mode effects, dynamic orientation factors,
and local field corrections [7,8,11], but, on the other hand,
suggests a new possibility that the FRET rate in MC
systems can be controlled solely by the arrangement of
chromophores.
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