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We demonstrate that a necessary precondition for an unconditionally secure quantum key distribu-
tion is that both sender and receiver can use the available measurement results to prove the presence of
entanglement in a quantum state that is effectively distributed between them. One can thus systemati-
cally search for entanglement using the class of entanglement witness operators that can be constructed
from the observed data. We apply such analysis to two well-known quantum key distribution protocols,
namely, the 4-state protocol and the 6-state protocol. As a special case, we show that, for some
asymmetric error patterns, the presence of entanglement can be proven even for error rates above 25%

(4-state protocol) and 33% (6-state protocol).
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Quantum key distribution (QKD) [1,2] allows two
parties (Alice and Bob) to generate a secret key despite
the computational and technological power of an eaves-
dropper (Eve), who interferes with the signals. Together
with the Vernam cipher [3], QKD can be used for uncon-
ditionally secure communication.

QKD protocols distinguish typically two phases to
establish a key. In the first phase, an effective bipartite
quantum mechanical state is distributed between the
legitimate users, which establishes correlations between
them. A (restricted) set of measurements is used to mea-
sure these correlations, and the measurement results are
described by a joint probability distribution P(A, B). In
the second phase, called key distillation, Alice and Bob
use an authenticated public channel to process the corre-
lated data in order to obtain a secret key. This procedure
involves, typically, postselection of data, error correction
to reconcile the data, and privacy amplification to de-
couple the data from a possible eavesdropper [4].

In this Letter we consider the first phase of QKD and
demonstrate that a necessary precondition for successful
key distillation is that Alice and Bob can detect the
presence of entanglement in a quantum state that is ef-
fectively distributed between them. Such detection may
involve available observed data only; it can be realized by
using the class of entanglement witness operators that can
be constructed from these data.

Two types of schemes are typically used to create
correlated data. In prepare and measure schemes (P&M
schemes) Alice prepares a random sequence of predefined
nonorthogonal states that are sent to Bob through an
untrusted channel (controlled by Eve). Generalizing the
ideas of Bennett er al [5], the signal preparation can be
thought of as follows: Alice prepares an entangled bipar-
tite state of the form |W,yeedas = D /Pi len|@;). If she
measures the first system in the canonical orthonormal
basis |e;), she effectively prepares the (nonorthogonal)
signal states |¢;) with probabilities p;. The action of the
quantum channel on the state |V, ,.)ap leads to an
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effective bipartite state shared by Alice and Bob. One
important characteristic of the P&M schemes is that the
reduced density matrix p, of Alice is fixed [6]. In entan-
glement based schemes a bipartite state is distributed to
Alice and Bob by an, in general, untrusted third party.
This party may be an eavesdropper who is in possession
of a third subsystem that may be entangled with those
given to Alice and Bob. While the subsystems measured
by Alice and Bob result in correlations described by
P(A, B), Eve can use her subsystem to obtain information
about the data of the legitimate users. Entanglement based
schemes have been introduced by Ekert [7], who proposed
to detect the presence of correlations of quantum me-
chanical nature by looking at possible violations of Bell-
like inequalities . This is, in general, more restrictive than
detection of the presence of entanglement. As we will
show below, the success of the key distillation phase
requires that the performed measurements together with
P(A, B) suffice to prove that the (effective) bipartite state
is entangled.

The starting point for our considerations is an upper
bound for the distillation rate of a secure key from the
correlated data via public communication, which is given
by the intrinsic information I(A; B | E), introduced by
Maurer and Wolf [8]. Consider all possible tripartite
states that Eve can establish using her eavesdropping
method, and all measurements she could perform on her
subsystem. This gives rise to a set of possible extensions
P of the observable probability distribution P(A, B) to
P(A, B,E). Maurer and Wolf [8] defines I(A;B | E)
using the mutual information /(A; B|E) between Alice
and Bob given the public announcement of Eve’s data
based on the probabilities P(A, B, E). It is defined in
terms of the conditional Shannon entropy H(X|e) =

> ex — pxle)log, p(xle) as

I(A; BIE) = ) P(e)[H(Ale) + H(Ble) — H(A, Ble)].
eEE

In an adaptation of Maurer’s work we define the intrinsic
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information as
I(A; B | E) = infpl(A; B|E). €))]

An important consequence is that, whenever the ob-
servable date P(A, B) can be explained as coming from a
tripartite state with a separable reduced density matrix
for Alice and Bob, the intrinsic information vanishes.

Observation 1.—Assume that the observable joint
probability distribution P(A, B) together with the knowl-
edge of the corresponding measurements can be inter-
preted as coming from a separable state o,p. Then the
intrinsic information vanishes and no secret key can be
distilled via public communication from the correlated
data. This is easy to see for entanglement based schemes
as we extend a separable reduced density matrix o,z =
Siaileialeil ® |®;)p(P;| to a tripartite pure state of the
form |W,) = > /qi @) al ®;)ple;) k. (See also [9].) Here
le;)r is a set of orthonormal vectors spanning a Hilbert
space of sufficient dimension. If Eve measures her sub-
system in the corresponding basis, the conditional proba-
bility distribution conditioned on her measurement result
factorizes so that for this measurement I(A; B|E) = 0. As
a consequence, the intrinsic information vanishes and no
secret key can be distilled. In the case of P&M schemes
we need to show additionally that the state I‘Ifsep> can be
obtained by Eve by interaction with Bob’s system only. In
the Schmidt decomposition, |W ), With respect to
system A and the composite system BE, is of the form
Wy = Siciluale)pe since ¢; and lu;), are fixed by
the known reduced density matrix p, to the correspond-
ing values of |W ). Then one can find a suitable
unitary operator Ugp such that |&;)pr = Upplv;)g|0)g,
where |0); is an initial state of an auxiliary system.

In both types of schemes it is clear that we can obtain a
secret key whenever the distributed (or effectively dis-
tributed) bipartite states are entangled qubit states and
each party is allowed to perform joint quantum manipu-
lations on their respective states. This is true since one
can distill maximally entangled states in this situation
[10,11]. However, up to now it has not been clear whether
this is still true if Alice and Bob perform their respective
measurements and can perform only classical operations
on their correlated data. This scenario has been partially
addressed under extra assumptions in [12-14]. Acin et al.
[15] proved that one can always distill a secret key from
any bipartite entangled qubit states by adapting the local
measurements to the quantum state and performing sub-
sequently a classical protocol. More recently, a one-to-one
relation between entanglement and secret bits has been
established [16].

Let us now turn to the investigation of the correlations
in detail. The question of whether the effectively distrib-
uted bipartite state is entangled can be addressed based on
the ideas of entanglement witnesses. An entanglement
witness is an observable that detects the presence of
entanglement (if any) of a given state p: A state p is
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entangled if there exists a Hermitian witness operator W
such that Tr(Wp) < 0, while we have Tr(Wo) = 0 for all
separable states o. These operators, as any bipartite
Hermitian operator, can always be decomposed into a
pseudomixture of projectors onto product vectors W =
S icilaiXa;l ® |b;)b;|, where the coefficients c¢; are real
numbers and fulfill Y ,c; = 1 [17-19]. Given such a de-
composition of W, the expectation value Tr(Wp) can be
obtained directly from the expectation value, P(a;, b;).

In our approach we consider the reverse problem: Given
a particular set of local measurements performed by
Alice and Bob, search for all entanglement witnesses
that can be constructed from them.

Theorem 1: Given a set of local operations with
positive operator value measures (POVM) elements F, ®
G, together with the probability distribution of their
occurrence, P(A, B), then the correlations P(A, B) cannot
lead to a secret key via public communication unless one
can prove the presence of entanglement in the (effectively)
distributed state via an entanglement witness W =
> arCapFa ® Gy with ¢,y real such that Tr(Wo) =0
for all separable states o and Y, ,c,,P(a, b) <0. By
observation 1 it is a necessary condition for the success
of the key distillation phase that we can exclude separable
quantum states as the origin of the observed data. These
data define equivalence classes of reduced density matri-
ces that are compatible with the data. We need to distin-
guish between cases where the determined equivalence
class contains separable states and those that do not. For
this we proceed as follows: Note that the operators of the
form Y, ,c,,F, ® G, form a real vector space which is a
subspace of the vector space spanned by the Hermitian
operator basis of the composite Hilbert space. The sepa-
rable density matrices form a compact, convex set in that
vector space, and its projection into a subspace is again a
compact and convex set formed by elements that represent
the equivalence classes mentioned before. Each element
of this new set can be explained as being the projection of
a separable density matrix, while the elements of the
complement of the set cannot be explained in this way
and must therefore come from the projection of an en-
tangled state. In the subspace, we therefore need to dis-
tinguish a compact and convex set from its complement,
which is done, again, by witness operators. In the sub-
space, all witness operators can be realized by definition.
The corresponding operators on the larger vector space
are those witness operators that can be created by real
linear combinations of the local measurements. This
proves the theorem.

The question whether certain correlations are of quan-
tum origin and might lead to a secure key is therefore
reduced to a search over all entanglement witnesses that
can be constructed from the protocol and the collected
data. We will illustrate the consequences of this view for
well-known protocols, namely, the 6-state protocol [20]
and the 4-state protocol [2]. In searching through the en-
tanglement witnesses, note that some conditions derived
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from witnesses are redundant in the sense that all en-
tangled states detected by one witness can be contained in
the set of detected entangled states of another witness. A
witness operator W is called optimal [21] if no other
entanglement witness exists that detects all states de-
tected by W. The class of optimal entanglement witnesses
(OEW) for two qubit states are given by W = | X, |
[22], where |¢,) denotes an entangled state and Tp is the
partial transposition, that is, the transposition with re-
spect to one subsystem.

For the case of the 6-state protocol, Alice and Bob
perform projection measurements onto the eigenstates of
the three Pauli operators o, o, and o, in the entangle-
ment based scheme where Eve distributes bipartite qubit
states. In the corresponding P&M scheme, Alice prepares
the eigenstates of those operators by performing the same
measurements on a maximally entangled qubit state.
Therefore, the set of three measurement bases used in
the protocol allows Alice and Bob to construct any en-
tanglement witness of the form

we S

i,j={0,x,y,2}

C[ja'i®0'j, (2)

where o, = 1 and c;; are real numbers. Note that the set

of operators {o; ® o'j},»,j constitutes an operator basis in
C? ® C2. Therefore, Alice and Bob can evaluate all en-
tanglement witnesses, in particular, the class OEW of
optimal witnesses for two qubits. This means that in
this protocol all entangled states can be detected.
Alternatively to the witness approach, Alice and Bob
can employ quantum state tomography techniques in
connection with the Peres-Horodecki criterion [23,24].
While the analysis of the 6-state protocol is quite
simple, the 4-state protocol needs deeper examination
since it turns out that the witnesses in OEW cannot be
evaluated with the given correlations, as we will see
below. In the 4-state protocol Alice and Bob perform
projection measurements in two qubit bases, say x and
z. In the corresponding P&M scheme Alice uses the same
set of measurements on a maximally entangled state.
For the entanglement scheme we obtain the set of
entanglement witnesses that can be evaluated with the
resulting correlations as
W= Z Cijo; ® 7. 3)

i,j={0,x,2}

This class, which we shall denote as EW,, can be char-
acterized with the following observation.

Observation 2.—Given an entanglement witness W, we
find W € EW, iff W = WTI' = WTr, To see this, we start
with the general ansatz of Eq. (2) and impose the con-
ditions W = WT = W»_ This directly constrains W to
the form (3) since o, is the only skew-symmetric element
in the operator basis. The reverse direction is then trivial

Note that the elements of OEW, W = |¢,X¢,.|"?, are
nonpositive, while W7r = |¢,)¢,| is a positive operator
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for all entangled states |¢,). This means that, in contrast
to the case of the 6-state protocol, the 4-state protocol
does not allow one to evaluate the optimal witnesses in
OEW. As a result, there can be entangled states that give
rise to correlations P(A, B) that are not sufficient to prove
the presence of entanglement.

The concept of optimal witnesses can be extended by
calling a witness W optimal in class C if and only if there
is no other element in C that detects all entangled states
detected by W. Our basic goal is now to characterize a
family of witness operators that are optimal in class EW,,
such that it is sufficient to check this family to decide
whether the presence of entanglement can be verified
from the given data. For this purpose we present a neces-
sary condition for a bipartite state to contain entangle-
ment that can be detected by elements of EW,.

Observation 3.—Given W € EWy, a necessary condi-
tion to detect entanglement in state p is that the operator
Q =1(p+ p™ + pTs + p7) is a nonpositive operator: To
see this, let us start with the observation that the symme-
tries of the witness operators in EW, give rise to the
identity Tr(Wp) = Tr(W{}). Now let us assume that the
operator () is non-negative. Then one can interpret it as a
density matrix. Since it is invariant under partial trans-
position, it must be a separable state. Since W is a witness
operator, we must therefore find Tr(Wp) = 0. As a result,
we find that the nonpositivity of () is a necessary con-
dition to detect entanglement of the state p with witnesses
in EW4

Theorem 2: Consider the family of operators W =
L(Q + Q). where Q =|$.X¢.| and |¢.) denotes a
real entangled state. The elements of this family are wit-
ness operators that are optimal in EW, and detect all the
entangled states that can be detected within EW,. Let us
start by checking that this family, indeed, can detect all
entanglement that can be detected in EW,. From
observation 3 we know that we need only to consider
bipartite states p such that QO =X (p + p™s + pTs + pT)
is nonpositive. We can find, therefore, an (entangled) state
|¢,) such that (¢,|Q]¢p,) < 0. Moreover, since Q) = Q7
this operator has a real representation. In this representa-
tion, also the state |¢,) has a real representation [25]. Let
us define the projector Q = |, Xp.|. Then we find
(¢.1Q1¢,) = Tt[3(Q + Q™ + Q"» + 0")p]. Therefore,
we can define the operator W = %(Q + QT + Q75 +
Q7) that can be further simplified to W = 1(Q + Q')
thanks to the real representation of Q. This operator is a
witness operator, since Tr(Wo) = 0 for all separable
states o while Tr(Wp) < 0 for the chosen p. Moreover,
by construction the family of these witness operators
detects all entanglement that can be detected within
EW,. The proof of optimality is omitted here. |

The set of witness operators W = 3(Q + o), 0 =
|, X,| provides an infinite number of necessary and
sufficient conditions for the presence of entanglement in
the observable correlations P(A, B). Each condition is
characterized by a real entangled state |¢,), and therefore
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the coefficients of the pseudomixture decomposition of
the corresponding witness operators can be easily pa-
rametrized with three real parameters. From a practical
point of view, this means that Alice and Bob can easily
check this set of conditions numerically.

Let us briefly analyze the implications of our results in
the relationship between the bit error rate e in the proto-
cols and the presence of correlations of quantum me-
chanical nature. Here error rate refers to the sifted key,
that is those events where signal preparation and detection
employ the same polarization basis. An intercept/resend
attack breaks the entanglement and gives rise to e = 25%
(4-state protocol) and e = 33% (6-state protocol), respec-
tively [20,26]. This means that if the error rate is below
these values, this already suffices to prove that the joint
probability distribution P(A, B) contains quantum me-
chanical correlations. However, for some asymmetric
error patterns, it is possible to detect the presence of
quantum correlations even for error rates above 25%
(33%). Let us illustrate this fact with an example that is
motivated by the propagation of the polarization state of a
single photon in an optical fiber. This channel can be
described by a unitary transformation that changes on a
time scale much larger than the repetition cycle of the
signal source, so it can be thought to be constant over that
time. Consider the unitary transformation U(f) =
cosfl — isinfoy. In this scenario, the resulting bit error
rate is given by e = sin?f and e = Zsin?@ for the 4-state
and the 6-state protocols, respectively. Nevertheless, in
both cases the existence of quantum correlations can be
detected for all angles 8. The case of the 6-state protocol
is clear, since a unitary transformation preserves the
entanglement and all entanglement can be verified in
this protocol. With respect to the 4-state protocol, it
can also be shown that there is always an entangle-
ment witness, W € EW,, that detects quantum correla-
tions in P(A, B). In particular, if we select W, =
sUpNdel + [P X I?), with |$,) the eigenvector of
the operator I |y)yl™* (lgh) = cosf|00) + sinf|01) —
sinf|10) + cosf|11)) which corresponds to its negative
eigenvalue, then we find in a suitable representation as
a pseudomixture for the entanglement witness that
Tr(Wep) = Zicip(ai’ bz) = _4_1;

To conclude, we have as a necessary condition for
QKD that the legitimate users can prove the presence of
entanglement in the effectively distributed quantum state.
To construct practical and efficient new QKD protocols, it
is vital to separate the generation of two-party correla-
tions from the public discussion protocol which extracts
a key from those data. We have analyzed the 4-state and
6-state QKD protocols, and we have derived necessary
and sufficient conditions for the existence of quantum
correlations in both protocols. As a special case, we have
demonstrated that, for some asymmetric error patterns,
the presence of this type of correlation can be detected
even for error rates above 25% and 33%, respectively.
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