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Quantum electrodynamics of excitons in a cavity is shown to be relevant to quantum operations. We
present a theory of an integrable solid-state quantum controlled-phase gate for generating entanglement
of two photons using a coupled nanodot-microcavity-fiber structure. A conditional phase shift of
O��=10� is calculated to be the consequence of the giant optical nonlinearity keyed by the excitons in
the cavities. Structural design and active control, such as electromagnetically induced transparency and
pulse shaping, optimize the quantum efficiency of the gate operation.
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FIG. 1. The coupled system of fibers, cavities, and nanodot:
(a) the physical structure, (b) the selection rules for the
ment of our proposed device is given in Fig. 1(a). Two
photons traveling along two optical fibers receive their

electron-trion transitions, (c) the energy structure, and (d) the
dressed energy states. See the text for an explanation.
The semiconductor nanodot plays a key role in nano-
science as has been demonstrated by the electrical control
of transport [1] and the optical control of quantum op-
erations [2]. Following the study of quantum electrody-
namics of atoms in cavity (CQED) [3,4], an effort is
under way in the study of CQED of excitons in nanodots
[5]. We report here the results of a theoretical study of
excitons in CQED as illustrated by the proposal of a
solid-state controlled-phase gate which entangles two
photons.

Entangled photon pairs are the mainstay of quantum
information processing [6] and the controlled gate which
conditions the dynamics of one photon on the state of the
other also enables a key logic operation for quantum
computation. There are two approaches to realize such
gates: (i) linear optics with projective measurements [7]
and (ii) nonlinear optics at the discrete photon level. The
logic gate working with few-photon nonlinear optics
requires an impractical interaction length (e.g., several
meters) in conventional Kerr media [8]. To obtain giant
optical nonlinearity for a two-photon logic gate, novel
schemes have been demonstrated, e.g., the atom-cavity
QED [9], or proposed, e.g., slow light in a coherently
prepared atomic gas exhibiting electromagnetically in-
duced transparency (EIT) [10].

The relevance of excitons in CQED is strengthened by
the recent advances in solid-state photonics and optoelec-
tronics. We expect that the localization of the optical
excitations would lead to ready integration of the solid-
state cavity devices with extant devices. Advances rele-
vant to our proposal in semiconductor quantum devices
include single photon sources operating at room tempera-
ture [11,12], high-Q microspheres and their coupling to
nanodots [5] and to fibers [13], and photonic lattice wave-
guides and cavities [14,15].

The qubit in our scheme is represented by two polar-
ization states of a photon. In a quantum controlled-phase
gate, a two-photon state acquires a phase-shift condi-
tional to their polarization configuration. The arrange-
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interaction by coupling to two silicon microsphere cavi-
ties which are joined by a doped nanodot. The dot
provides in theory [16] a strong third-order optical non-
linearity which is essential for a controlled interaction
between two photons. Two cavities of different resonant
frequencies are needed to afford control of coupling to
either photon. They also act as an in situ energy filter
preventing two photons ending in the same fiber.

The photon scattering at the phase gate has inevitably
some unwanted dynamics such as polarization-dependent
reflection and motion-polarization entanglement. By re-
lying on the transmission probability, the gate has the
probabilistic nature as the linear optics procedure. The
essential distinction lies in our use of the strong nonline-
arity to provide definite interaction dynamics in the cavi-
ties versus the entanglement generated by the projective
measurement. The probabilistic nature arises from the
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coupling of the photons to the solid-state system, which
is unavoidable in any system, but its effect can be
ameliorated. Our solution is two pronged: to eliminate
the linear reflection by EIT and to minimize motion-
polarization entanglement by pulse shaping and system
design.

The two LP11 modes in a step index optical fiber [17]
are chosen as the two polarization states jXi and jYi for
the qubits [see Fig. 1(a)]. The relevant modes in the micro-
cavities are chosen to be the TE modes resonant with the
nanodot transitions while the other TE modes and all TM
modes are tuned far off resonant for a small cavity
(��m) [18]. The TE cavity mode can be excited only
by an jXi photon in the fiber, whose coupling strength to
the cavity on the left (right), �L�R�, is designed by adjust-
ing the distance between the cavity and the fiber [13].
Thus, only in the jXXi state do the two incoming photons
interact via the cavity-dot coupling system, resulting in a
conditional phase shift.

The strong photon-photon interaction induced by the
dot-coupled cavities is favored by both the small cavity-
mode volume and the large dipole moment of the nanodot
transitions, but the nanodot which contains a single active
electron plays an essential role. The basic nonlinear opti-
cal process is illustrated with the aid of the energy struc-
tures in Fig. 1(c). A strong magnetic field is applied along
the x direction to produce nondegenerate transitions from
the electron spin states to the charged exciton states
(trions), which are tuned, respectively, in resonance
with the two cavity modes. The two split electron states
are jx�i � �1=

���

2
p

��ey
 � ey��jGi, and the two degenerate
trion states are jT�i � �1=

���

2
p

��ey
e
y
�h

y
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e

y
�h

y
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where ey� and hy� create electron and hole spin states
along the z axis. The transition selection rules are [see
Fig. 1(b)] jx�i $ jTi via the X polarized field and
jx�i $ jT�i via the Y polarized field. The spatial con-
figuration of the cavity-dot structure is such that the TE
modes are X polarized at the site of the nanodot.
The strong coupling between the trion state jT�i and
the cavity-dot state jx
; CLi (or between jT
i and the
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cavity-dot state jx�; CRi) mixes each pair into two split
trion-polariton states, where CL�R� denotes the left (right)
cavity mode. We denote the lower polariton states as j3i
and j4i, respectively. The four states, jx
i, jx�i, j3i, and
j4i, form the level structure for the optical nonlinearity
and all other states are assumed far off resonance. This
situation is well satisfied by the cavity-dot coupling
gcav � 0:5 meV, cavity decay rate into the fiber
�0:1 meV, and Zeeman splitting g�BBx � 1 meV. The
large value of gcav is not critical provided that it is much
larger than the cavity decay rate.

To induce an interaction between the photons from the
left and right channels, a strong Y-polarized pump pulse is
applied to resonantly couple the states jx�i and j3i.
Consider the effect of this classical field in the dressed
basis: j1di � jx
ijNi, j3di � j3ijNi, j2di � jx�ijN 

1i, and j4di � j4ijN 
 1i, where the Y-polarized coherent
field is approximated by the Fock state jNi with large N.
Figure 1(d) shows how the two X photons on separate
fibers which affect separately the modes in the left and
right cavities are coupled by the Y pump. The coupling
strength �c between j3di and j2di is proportional to the
electric field strength. Thus, the nonlinear optical cou-
pling is readily manipulated by switching on and off the
pump pulse. The classical pump pulse also increases the
efficiency of the operation by cooling the spin system and
by eliminating the linear reflection and absorption by
laser cooling and EIT [see Eq. (1a)] [10,19].

The transformation of the polarization state of two
photons is carried out by scattering theory. The initial
state is specified by the density matrix �i in the basis set
of the direct products of the polarization states, j�L�Ri
with � � X or Y, and of the wave vector states, jkL; kRi.
The transmitted state �f is given by t�ity, where t is the
transmission matrix. By design, t is diagonal in the
polarization states. The final density matrix of the two-
photon polarizations is obtained by tracing �f over the
wave vectors of the photons [20]. The transmission t is
obtained via the T matrix conserving the total energy.
The linear and nonlinear scattering terms are nonpertur-
batively calculated [21] as
T�1�
fi � ��L;X�kR;k0R

j�Lj
2

2

E1d 
 �hckL � E2d

�E1d 
 �hckL � E3d 
 i�3=2��E1d 
 �hckL � E2d� ��2
c
; (1a)

T�3�
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 �hck0L � E2d� ��2
c
; (1b)
where �3�4� is the decay rate of the polariton states j3i (or
j4i). In silicon microspheres, the whispering gallery
modes can have a Q factor as high as �108 [5], so the
intrinsic decay of the cavity modes can be neglected. The
relaxation rate of trions is of the order of �eV, much less
than the cavity-to-fiber loss. Thus, the decay of the trion
polaritons is dominated by the leakage of the cavity
modes into the fiber modes. The decay rates thus can be
approximated as �3�4� � j�L�R�j

2=c.
The Y-polarized photons are not scattered not being

coupled to the cavities by design. The linear term in
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FIG. 2. The amplitude and phase of the transmitted two-
photon wave function as functions of the detuning �!0

L �
�hck0L � �E3d � E1d� and �!0

R � �hck0R � �E4d � E2d�. The pa-
rameters are �3 � �4 � 60 �eV, �c � 8 �eV, and gcav �
0:5 meV. The input wave function is such that �i�kL; kR� �
%�48
�!R�%��16��!R�%�1:6
�!L�%�1:6��!L� with
arguments in units of �eV.
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FIG. 3. The same as Fig. 2 except that the parameters
are �3 � 45 �eV, �4 � 60 �eV, �c � 15 �eV, gcav �
0:5 meV, and �i�kL; kR� � %�38
�!R�%��26��!R� �
%�0:6
�!L�%�0:6� �!L�.
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Eq. (1a) contributes to the reflection of the X-polarized
photon from the left channel. It is significantly suppressed
by the EIT effect [19], which results from the destructive
interference between the damped polariton state j3di and
the metastable state j2di coupled by the classical pump
field, as is evident from the vanishing of T�1�

fi when the
incoming photon is in resonance with the j1di ! j3di
transition. The linear reflection of the X-polarized pho-
tons from the right channel is eliminated since the initial
state of the system has been prepared in j1di by the laser
cooling cycle: The classical pulse pumps the ground
state jx�i to j3i, and then the polariton state relaxes to
jx
i through the cavity-to-fiber leakage (details to
be published). The reduction of the linear reflection in
both fibers brings to prominence the third-order terms
which are responsible for the gate operation. The non-
linear scattering term in Eq. (1b) is composed of three
fractions corresponding to three processes: the excitation
of the trion-polariton by the left-channel photon, the
induced scattering of the right-channel photon, and the
emission of the left-channel photon by the polariton
recombination.

Because of the resonance features in the T matrix, the
transmission coefficient tXX � fe�i!, where f and ! are
functions of the wave vectors, can cause the amplitude
and phase modulation of the transmitted wave since the
incoming photons are in wave packets. The amplitude
modulation can be suppressed by either using longer
time pulses or working in the far-resonance region. Al-
though often overlooked in phase-shift estimation based
on "�3� susceptibility, the phase-variation effect results in
distortion of the pulse shape and entanglement of the
motion and polarization of the photons. The polarization
states of the two photons are obtained by projection after
the transmission. The effect of pulse deformation may be
reduced by frequency filtering the transmitted pulse.

We show how shaping the input pulses leads to a re-
duction of the output pulse deformation. (i) As a conse-
quence of the optical coupling between the j3di and j2di
states, the choice of the left input photon to be within
��c of being in resonance with the j1di ! j3di transi-
tion, the linear reflection is reduced and the first factor on
the right side of Eq. (1b) will yield a strong third-order
transmission. (ii) To diminish the pulse distortion due to
the sharp resonant structure around the j2di ! j4di tran-
sition, the right-channel pulse is detuned about �4=2
below the transition where the real part (corresponding
to the phase shift) of T�3� is large and flat while the
imaginary part (corresponding to the reflection) has de-
creased to a small value. (iii) To minimize the pulse
broadening and distortion from the convolution of the
input pulses with energy conservation, we choose the two
input pulses to have square-shaped spectra with much
different widths. In our design, �4=2 is much larger
than �c, so the right-channel pulse is set the wider in
frequency.
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Figure 2 presents the transmitted wave function
(k0L; k

0
R > 0) for incoming photons in square pulses with

the polarization state jXXi. Though visible, the pulse
distortion and broadening and the inhomogeneity in the
phase shift is quite small. A conditional phase shift of
�=29 is obtained with a transmission probability of 0.72
and a 0.99 fidelity.

The loss in transmission and the pulse distortion in
Fig. 2 result mainly from the imperfect EIT when the
photon is off resonant with the j1di ! j3di transition.
Improvement of both the pulse shape and the transmis-
sion is effected by increasing the pump power �c (in
order to open a larger EIT window) and by using narrower
bandwidth pulses at the expense of a weak nonlinear
phase shift. An example is shown in Fig. 3, in which a
nonlinear phase shift ��=330 is obtained almost without
pulse-shape change or reflection loss, shown by the com-
puted transmission probability of �0:982 and almost
perfect fidelity.

The examples above show that reduction of the reflec-
tion and distortion of the photon pulses diminishes the
gate phase and the entanglement. A small entanglement is
still useful for some quantum information purposes [22].
Moreover, a large phase shift can be accumulated, by
either passing a photon pair many times through the
phase gate or using a series of many identical gates
217402-3



TABLE I. Operation efficiency of the symmetrical circuits
composed of n
 n gates with parameters �3 � 0:06 meV,
�4 � 0:5 meV, and �c � 6:2 �eV. The left- and right-channel
Gaussian pulses with FWHM 7.5 and 50 �eV are resonant with
the left and right polariton transitions, respectively. C denotes
the concurrence and E�C� the entanglement of formation.

n Transmission Fidelity Purity C E�C�

2 0.1165 0.8638 0.9591 0.7277 0.6272
4 0.020 74 0.9758 0.9850 0.9515 0.9306
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integrated into a single chip. With modern fabricating
techniques, the integrated quantum gates can be con-
structed either with microdisks and waveguides etched
on semiconductor heterostructures [23] or with point and
line defects engineered in photonic lattices [14].

To use the system to produce an entangled photon pair
rather than to perform a controlled-phase operation, we
optimize the entanglement by a different procedure. The
quantum operation is favored by maximizing the trans-
mission, but the entanglement is favored by symmetrizing
the two photons for maximal projection of the polariza-
tion degrees of freedom. First the input state is prepared
as the equal linear combination of the four polarization
states of the two photons. Then the state is passed n times
through the coupled system as described above, under-
goes single bit operation swapping the jXi and jYi states
in both photons, and is passed through the phase gate n
more times. This symmetrizes the transmitted density
matrix after projecting out the motional degrees of free-
dom. Table I shows the calculated results for 2
 2 and
4
 4 gates. The transmission probabilities T are much
lower than for the phase operation. The quantitative
measures of the operation including fidelity Tr��t�ideal�
towards the maximally entangled state �1=

���

2
p

��jXYi 

jYXi�, the purity Tr��2

t �, the concurrence C, and the
entanglement of formation E�C� [24] all show excellent
entanglement.

In summary, we have proposed a solid-state
controlled-phase gate for two photons. The flying qubits
are conducted through fibers coupled to scattering centers
composed of microcavities connected by a doped semi-
conductor nanodot. This allows a fiber implementation of
quantum information processor. Calculated results show
that the system is flexible as a phase gate as well as
producing strong entanglement. The trions in the doped
nanodot used for nonlinear interaction here can be re-
placed by other electronic systems, such as biexcitons in
an undoped nanodot (results will be published elsewhere),
states in nanoclusters, or even some strong transitions in
rare-earth impurities, e.g., the 4d-5f transition in Er2
.
The microcavity may be microspheres or defects in pho-
tonic lattices. The structure has unique features, such as
small size, integrability, and stability, useful for quantum
information and for scalable quantum computing.
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