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The dynamic spin susceptibility, y’(w), has been measured over the energy range of 2 = w <
10 meV for overdoped La,_,Sr,CuO,. Incommensurate (IC) spin excitations are observed at 8 K for all
superconducting samples for 0.25 =< x < 0.28 with y” peaking at ~6 meV. The IC peaks at 6 meV
become smaller in intensity with increasing x and, finally, become unobservable for a sample with
x = 0.30 which has no bulk superconductivity. The maximum x” decreases linearly with T.(onset) in
the overdoped region, implying a direct cooperative relation between the spin fluctuations and the

superconductivity.
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The interrelationship between magnetic fluctuations
and superconductivity in the cuprates is one of the most
important features of the physics of high-7', superconduc-
tors. For the single CuO, layer material, La,_,Sr,CuO,
(LSCO), neutron scattering experiments have evinced
strong evidence for the interdependence of magnetism
and superconductivity [1]. Importantly, it is found that
the magnetic excitations are incommensurate (IC) with
the modulation direction approximately parallel to the
Cu-O-Cu axis [2]. The same modulated fluctuations
have been confirmed in YBa,Cu;04,, (YBCO) [3]. It
has also been found that T, is inversely proportional to
the modulation period in the underdoped region for both
LSCO [4] and YBCO [5,6]. Finally, the IC modulation
direction for LSCO rotates from the diagonal Cu-Cu
direction to the parallel Cu-O-Cu direction at the
insulator-superconductor boundary at x = 0.055 [7].

Another important magnetic feature correlated with
the superconductivity is the magnetic resonance peak
observed first in YBCO [8] and more recently in
Ba,Sr,CaCu, 04, [9] and T1,Ba,CuOq ., [10]. The reso-
nance peak originates from a strong magnetic excitation
at intermediate energies at the (1/2, 1/2) commensurate
position. This peak is markedly enhanced below T, [11].
Until recently, no resonance had been seen in La,CuQO,
(LCO)-based systems. However, recent experiments in
La, g75Bag 1o5Cu04 [12] and La, g4Srj 16CuOy4 [13] suggest
that the overall dispersion of the magnetic excitations
including the resonance is rather similar in YBCO and
LCO-based superconductors.

These experimental facts suggest a direct correlation
between the superconductivity and the spin fluctuations,
especially at low energies (w = 12 meV) in LSCO.
Clearly, the behavior in the overdoped region is particu-
larly interesting since with increasing doping 7, de-
creases progressively to zero. However, information on
the spin fluctuations in the overdoped region is very
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sparse both because of the weak intensity of the magnetic
excitations in neutron scattering and because of the diffi-
culty in growing large high-quality single crystals. In this
Letter, we report a neutron scattering study of the mag-
netic excitations in overdoped LSCO with x = 0.25, 0.27,
0.28, and 0.30 with the intent of elucidating the relation
between low-energy magnetic excitations for 2 = w =
10 meV and superconductivity. We find that all supercon-
ducting samples exhibit a maximum in the dynamic spin
susceptibility, y”(w), at @ ~ 6 meV, and, notably, that
the maximum y”(w) decreases linearly to zero with
T, (onset) in the overdoped region as shown in Fig. 1.
This demonstrates a direct cooperative relation between
magnetic fluctuations and superconductivity.

The single crystals grown by the traveling-solvent
floating-zone method [14] were subsequently annealed
under an oxygen pressure of 3 atm at 900 °C for 100 h.
Small pieces at each concentration, cut from the same
crystals used for the neutron scattering experiments, have
been characterized by measurement of the magnetic sus-
ceptibility. The inset of Fig. 1 shows the supercon-
ducting shielding signals measured in 10 Oe after cooling
in zero field. T, decreases progressively with increasing x,
thus verifying that the actual hole-concentration in-
creases systematically in the grown crystals. The mag-
netic susceptibilities indicate that there is a minority
phase present with a higher 7, ~ 30 K whose volume
fraction is at most 5% in the total volume of each sample.
Therefore, we choose as T, for each sample the onset
temperature of the second and the largest transition,
which is summarized in Table L

Neutron scattering experiments were performed at the
C5 spectrometer at the Chalk River Laboratory. For each
concentration, two crystals (total volume of ~2 cc) were
coaligned with the a* and b* axes in the scattering plane.
Coaligned samples were mounted in a closed cycle He
refrigerator and measured at temperatures down to 8 K. A
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FIG. 1. Maximum y”(w) at 8 K as a function of T, for
overdoped LSCO. The solid line is the result of a least square
fit to a linear function. The inset shows the magnetic shielding
measured in 10 Oe after cooling in zero field.

vertically-focused pyrolytic graphite (PG) monochroma-
tor and a flat PG analyzer were used with the collimation
sequence 33/-48'-S-51’-120" (S denotes sample). All in-
elastic measurements were carried out with a fixed final
energy of 14.5 meV (A = 2.37 A). A PG filter was placed
after the sample to eliminate neutrons with wavelengths
A/2 and A/3. All overdoped samples were tetragonal
down to the lowest temperature with typical lattice con-
stants of @ = b = 3.73 A at 8 K. Phonon intensities mea-
sured at the position (0.92,1.08,0) showed that the
volume ratios of the samples with x = 0.25, 0.27, 0.28,
and 0.30 were 1:1.16:0.98:1.02. All profiles of the inelas-
tic magnetic scattering are fit to a resolution convoluted
two-dimensional Lorentzian function S(q, @) « > ;(n +
1)/[(q — q,)* + k(w)?*] to derive the incommensurability
8 and intrinsic peak width k, where (n + 1) is the thermal
population factor, and the summation over i has been

TABLE I.  Onset T, and parameters of the magnetic IC peaks
for all samples. The peak parameters are obtained from fits of
the data in Fig. 2 to resolution-convoluted two-dimensional
Lorentzians.

x Onset T, (K) 5(r.lu.) (A~
0.25 14.0(5) 0.123(5) 0.061(12)
0.27 7.0(5) 0.106(11) 0.078(30)
0.28 4.5(5) 0.117(13) 0.096(35)
0.30 <2 e e
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carried out for the four peaks around (0.5,0.5). The
absolute value of the dynamic susceptibility y”(w) has
been calculated by normalizing to the integrated inten-
sity of a phonon at Q = (0.92, 1.08, 0). x”(w) has been
calculated by integrating x”(g, w) over g in a single
Brillouin zone for all four IC magnetic peaks.

IC magnetic excitations have been observed for all
superconducting samples. Representative profiles at 8 K
are shown in Fig. 2, at @ = 6.2 meV for x = 0.25 and
0.28 and at w = 5.2 meV for x = 0.27. The scan trajec-
tory is shown in the inset. The horizontal axis represents
the distance from the (0.5, 0.5) position. The solid lines
are the results of fits to the Lorentzian function convo-
luted with the instrumental resolution. The background
levels are also adjusted in the fits. The incommensurabil-
ity & and the half width at half maximum «(w) obtained
from the fits are listed in Table I. Those parameters
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FIG. 2. IC peak profiles where the maximum (or near maxi-

mum) x” at 8 K has been observed for each sample. (v =
6.2 meV for x = 0.25 and 0.28; w = 5.2 meV for x = 0.27.)
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demonstrate that the incommensurability remains con-
stant at § ~ 0.12 while the peaks broaden progressively in
g with increasing x. Although there is a small difference
in volume for each concentration, it is nevertheless clear
that the magnetic excitation intensity decreases progres-
sively with increasing x. Before discussing this interest-
ing feature, we present first the energy dependence and
temperature dependence of y”(w) for x = 0.25. This
sample shows the highest intensity among the concen-
trations studied.

The energy dependence of y”(w) at 8 and 30 K for x =
0.25 is shown in Fig. 3(a) as solid and open circles,
respectively. At 8 K, no clear spin gap is observed, con-
sistent with Ref. [15]. Instead, we find that y"(w) in-
creases linearly with energy at w = 5 meV, and has a
maximum at w ~ 6 meV, slightly lower than the energy
at which " in the optimally doped samples has a maxi-
mum. The linear increase of y” at low energy can be
explained by a damped magnon model, in which the
response function is of the form wI'/(w? + I'?). In this
formula y” has a maximum at w ~ I'. However, a fit of
our results to this function fails because of the large drop
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FIG. 3. (a) Energy dependence of y"(w) for x = 0.25 at 8 K

(solid circles) and at 30 K (open circles), and for x = 0.27 at § K
(squares). The solid and dashed lines are guides to the eye.
(b) Temperature dependence of y"(w = 6.2 meV) for x = 0.25.
The solid line is a guide to the eye.
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of ¥ at  ~ 8 meV. This means that the maximum of y”
around 6 meV is intrinsic rather than due to the damping
of magnons.

We have not observed any significant difference be-
tween the y spectra at 8 K and at 30 K, that is, below T
and above T,. We believe that such a weak change in the
x" spectrum through T, is characteristic of samples in the
overdoped regime. The temperature dependence of y” at
o = 6.2meV for x =0.25 is shown in Fig. 3(b). x"
appears to have a weak maximum around 7. and to
decrease continuously with increasing temperature up
to 275 K. The same enhancement of the low-energy
susceptibility at @ = 6 meV around T, has been observed
for a sample with x = 0.14 by Mason et al. [16]. This
suggests that this is a general feature for a wide hole-
concentration range from the optimally doped to the
overdoped regions. This fact implies a correlation be-
tween low-energy susceptibility and superconductivity,
which will be more clearly confirmed from the hole-
concentration dependence of " that we discuss below.

To probe further the relation between the y” peak at
~6 meV and superconductivity, we have studied the
hole-concentration dependence of x”. Since the y"(w)
spectrum does not change rapidly around 7., we have
measured the magnetic response at 8 K for x = 0.27, 0.28,
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FIG. 4. (a) Scan profile for x = 0.25 along trajectory A shown

in the inset. (b) Scan profiles for x = 0.30 along two trajecto-
ries, one across the peak positions (A) and the other through a
background position (B). The horizontal axis, g, indicates the
distance from the H = K line.
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and 0.30. Clear IC peaks have been observed for x = 0.27
at w = 5.2 meV, while somewhat broader peaks have
been observed for the x = 0.28 sample at @ = 6.2 meV,
as shown in Fig. 2. The energy dependence of " for x =
0.27 is shown in Fig. 3(a) as squares. It is seen that y"(w)
again has a maximum at w ~ 6 meV. For x = 0.28, the
IC signal below 5 meV and above 7 meV is very weak and
has not been detected clearly. These facts indicate that the
dynamic spin susceptibility y”(w) in overdoped LSCO
always has a maximum around 6 meV. Also, as shown
in Fig. 2, the IC peak around 6 meV clearly decreases
in intensity with increasing hole concentration x.
Importantly, the IC magnetic signals finally become un-
observable at x = 0.30, which does not show bulk super-
conductivity for temperatures as low as 2 K. This is
clearly seen in Fig. 4, which shows scans (a) for x =
0.25 and (b) for x =0.30 at @ = 6.2 meV along the
trajectories displayed in the inset. Since the volumes of
the x = 0.25 and 0.30 samples determined by phonon
measurements are almost identical, one can compare
the profiles for both concentrations directly. The IC peaks
in x = 0.25 simply disappear in the x = 0.30 sample.
Figure 4(b) shows a comparison between scans along
trajectories A and B, the former across the expected IC
positions and the latter in the background region.
Although there is a small difference between the two
profiles, possibly due to poor statistics, no clear IC inten-
sity appears for x = 0.30. We have also conducted scans
at different energies 4 = w = 8 meV and along a trajec-
tory across (0.5, 0.5); however, no clear signal has been
found. The decrease of magnetic intensity with increas-
ing x is displayed in Fig. 1 by plotting the maximum
x"(w) as a function of T,.. The ambiguity of the magnetic
intensity for x = 0.30 is shown as an error bar for the x =
0.30 data. Interestingly, the maximum y” is observed to
be proportional to 7., evincing a direct and dramatic
correlation between low-energy IC spin excitations and
superconductivity.

In summary, we have shown that all superconducting
overdoped samples, x = 0.25, 0.27, and 0.28, exhibit low-
energy IC (6 ~ 1/8) spin excitations with an integrated
susceptibility x”(w) which has a maximum at w ~
6 meV. Further, the maximum spin susceptibility de-
creases linearly to zero with T,. Finally, the low-energy
spin excitations disappear coincident with the disappear-
ance of bulk superconductivity at x = 0.30. These results
demonstrate a direct relation between the dynamic spin
susceptibility peak at 6 meV and superconductivity. Our
observation of the linear relation shown in Fig. 1 is
limited to the overdoped region, since the y"(w) spec-
trum exhibits different behaviors in the optimal and
underdoped regions: to be specific, y”(w) shows a gap
below ~6 meV for optimally doped samples, while for
underdoped samples x”(w) increases continuously with
decreasing w.
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We conclude by observing that in LSCO the onset of
superconductivity in the underdoped region coincides
with a rotational transition of the direction of the low-
energy incommensurate spin fluctuations from diagonal
to parallel to the Cu-O-Cu bond [7], while the vanishing
of superconductivity in the overdoped region is signaled
by a smooth decrease in the amplitude of these parallel
low-energy spin fluctuations to zero. Empirically, then, in
LSCO the low-energy incommensurate spin fluctuations
and superconductivity are intimately correlated through-
out the entire phase diagram, although the magnetic
fluctuations contribute to superconductivity in different
manners at different doping levels. Clearly, this calls for a
fundamental theoretical explanation.
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