
P H Y S I C A L R E V I E W L E T T E R S week ending
28 MAY 2004VOLUME 92, NUMBER 21
Climbing the Entropy Barrier: Driving the Single- towards the Multichannel Kondo Effect
by a Weak Coulomb Blockade of the Leads

S. Florens1 and A. Rosch1,2

1Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany
2Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
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We study a model proposed recently in which a small quantum dot is coupled symmetrically to
several large quantum dots characterized by a charging energy Ec. Even if Ec is much smaller than the
Kondo temperature TK, the long-ranged interactions destabilize the single-channel Kondo effect and
induce a flow towards a multichannel Kondo fixed point associated with a rise of the impurity entropy
with decreasing temperature. Such an ‘‘uphill flow’’ implies a negative impurity specific heat, in
contrast with all systems with local interactions. An exact solution found for a large number of channels
allows us to capture this physics and to predict transport properties.
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What happens if the charging energy Ec of the leads is
much smaller than the Kondo temperature, Ec � TK? In

quantum dot (represented by Abrikosov fermions f)
couples to several larger dots displaying charging effects:
Simple models of non-Fermi liquids, such as the multi-
channel Kondo model, have attracted much theoretical
interest [1], especially due to their striking properties
such as zero-bias anomalies or a finite entropy at zero
temperature, S�T � 0� � ln�g�, with a noninteger g [2].
So far, however, their experimental realization has been a
challenging task. The advent of nanostructures that can
be designed and tuned more easily than solid state sys-
tems is a major step towards observing these interesting
strong-correlation effects in the laboratory.

The multichannel Kondo model describes a single spin
coupled symmetrically to several independently con-
served conduction electron ‘‘channels.’’ Recently Oreg
and Goldhaber-Gordon [3] suggested that these channels
can be realized by attaching several large quantum dots
serving as ‘‘leads’’ to a single small dot. They pointed out
that a sufficiently large charging energy, Ec * TK, in
those leads can suppress all low-energy cotunneling pro-
cesses between them which would otherwise mix the
channels and destroy the multichannel physics. The ex-
perimental realization of such a system is a demanding
task as the size of the large dots has to be chosen such that
the level-splitting �L is sufficiently small and, simulta-
neously, the charging energy is large enough, �L �
Tmulti
K & TK & Ec, where Tmulti

K is the Kondo temperature
of the multichannel Kondo model and TK refers to the
single-channel Kondo temperature for Ec � 0. Further-
more, considerable fine tuning, using gate voltages, is
required to guarantee that all leads couple equally to
the spin residing on the small dot. Pustilnik et al. [4]
have recently discussed in detail how to achieve such a
fine tuning by calculating the conductance for small
variations in the coupling to the various channels. The
idea that interactions in the leads can lead to multichannel
physics was also put forward earlier by Coleman and
Tsvelik [5], and received recent additional support [6].
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this case a single-channel Kondo resonance will develop
upon lowering T. According to conventional wisdom, the
Fermi-liquid fixed point of the single-channel Kondo
effect can never be destroyed by small perturbations
(for example a weak magnetic field, B � TK, does not
prevent the formation of the Kondo resonance). Indeed,
the powerful ‘‘g theorem’’ of Affleck and Ludwig [7,8]
proves that no small local perturbation can destabilize
such a zero-entropy fixed point: The impurity entropy
ln�g� of boundary conformal field theories (to which
Kondo models belong) always decreases under renormal-
ization group flow. According to this theorem, a flow from
the multichannel to the single-channel fixed point is
possible, but not vice versa. However, the g theorem
does not cover the situation under discussion, where
long-range interactions induce a Coulomb blockade in
the leads.

The purpose of this Letter is to show that in such a
situation tiny charging energies Ec � TK can destroy the
single-channel Kondo effect and stabilize a multichannel
fixed point. As the multichannel system is characterized
by a finite residual entropy [S�T � 0� � ln

���
2

p
for two

channels] this requires a negative impurity specific heat
in some T range. A simple argument in favor of such a
scenario is that the existence of the single-channel Kondo
effect implies resonant tunneling between the leads. The
Coulomb blockade in the leads, however, prohibits such
a resonance. The Kondo effect cannot overcome the
Coulomb blockade, as resonant tunneling in an energy
window of width TK costs a charging energy of order
Ech��N�

2i � Ec�TK=�L�, where �N are charge fluctua-
tions induced by the resonant tunneling and �L is the
level spacing in the leads. These energy costs are larger
than TK whenever Ec > �L, suggesting that for Ec 	 �L
a multichannel Kondo effect will form.

We consider a model where the spin on the ‘‘small’’
y
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FIG. 1. Schematic plot of the multichannel Kondo tempera-
ture Tmulti

K versus Ec. Note the maximum for Ec � TK.
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where : . . . : denotes normal ordering and we assume
nondegenerate charge states in the leads. In view of
greater generality that will be useful in the following,
we suppose an arbitrary number K of interacting leads,
and we consider an SU�N� spin in a representation which
fulfills the constraint

PN
�1 f

y
f � N=2. For N � 2, the

last term in Eq. (1) describes (up to a potential scattering
term) the usual exchange coupling of a spin 1=2 to a
symmetric combination of electrons from all leads,
cyk;s � �1=

����
K

p
�
PK

��1 c
y
k�. Therefore the conventional

one-channel Kondo effect develops for Ec � 0. Note the
symmetric coupling of the spin to all leads; as mentioned
above, this requires fine tuning in experiments.

In order to make contact with previous results [3,4], we
first use the perturbative renormalization group (RG) to
discuss the case of large charging energy TK � Ec � D,
where D is an ultraviolet cutoff set by the bandwidth or
the charging energies in the small dot. For cutoffs large
compared to Ec, the Coulomb blockade does not modify
the RG flow for the dimensionless coupling j � JNf (Nf
is the density of states). For a running cutoff � 	 Ec, one
therefore finds within one-loop RG @j=@ ln� � j2 and
at the scale � � Ec the running j��� takes the value
j�Ec� � 1= ln�Ec=TK� with TK � De1=j [9] and j�Ec� �
1 as Ec 	 TK. For � � Ec the charge on each lead is
conserved separately and all processes which mix chan-
nels are frozen out. Therefore one expects a flow [1] to
the K-channel Kondo fixed point with @j=@ ln� � j2=K
with the flow starting at j�Ec�. From this we can
read off the multichannel Kondo temperature [9] for
TK � Ec � D

Tmulti
K � EceK=j�Ec� � TK �TK=Ec�

K1: (2)

For Ec > D, the multichannel equation determines the
RG flow alone as channel mixing is suppressed, which
leads to the usual result Tmulti

K � DeK=j. Figure 1 shows
the enhancement of Tmulti

K with decreasing Ec.
To analyze the physics at small Ec, we introduce a

phase (or slave rotor) representation [10,11] of the charg-
ing energy:

H �
X
k�

�ka
y
k�ak� �

X
�

EcL̂L
2
�

�
J
NK

X
kk00��0

fy0fa
y
k�ak00�0ei��i��0 ; (3)

where we have set cyk� � ayk� exp�i��� and L� �
i@=@��. This effective matrix of Kondo couplings
J��0 ��� � J exp�i��  i��0 � allows us to reinterpret the
original idea of Oreg and Goldhaber-Gordon. At large Ec
the phases �� fluctuate wildly in J��0 ��� for � � �0,
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which leads to a flow towards a diagonal coupling at
low-energy. In this case, channel number is conserved
and a multichannel Kondo effect will develop. However,
for Ec equal to zero strictly, the phases are locked and
drop from the Kondo coupling in Eq. (3), leaving a model
displaying Fermi-liquid properties and complete screen-
ing of the spin.

To study the effects of a small Ec � TK within pertur-
bation theory, we expand Eq. (3) around constant ��. This
expansion is valid as long as h������  ����0��2i � 1,
which allows us to reliably calculate the correction �F
to the free energy for T 	 Ec. After some straightfor-
ward but tedious manipulations we obtained

�F
N

� 
K  1

2K

Z �

0
d�h�����  ��0��2iT���G0���

�
K  1

"2K

Z TK

T

2Ec

!2 ! � 2
K  1

"2K
Ec log

�
TK
T

�
; (4)

where T��� is the T matrix of the symmetric channel and
G0�i!n� �

P
k1=�i!n  �k� the bare local Green’s func-

tion of the conduction electrons. For the last equality in
(4) we used that "NfImT�!� � 1 for !; T � TK which
follows from Friedel’s sum rule. It is therefore valid for
Ec � T � TK. Up to (known) prefactors of order 1, the
impurity entropy in this regime is thus given by

S�T�=N � T=TK � Ec=T; (5)

where the first term arises from the usual Kondo effect
and the second from the charge fluctuations described by
Eq. (4). This proves that the impurity entropy will show a
minimum at the scale TS �

������������
EcTK

p
and implies a nega-

tive impurity specific heat for Ec � T � TS (the specific
heat of the total system �T=�L remains positive as we
assumed a negligible level spacing �L � Ec). Moreover,
the entropy per spin reaches values of order 1 for T � Ec
where the expansion breaks down, opening the possibility
of a flow towards a multichannel fixed point. When we
take into account that the crossover at Ec takes place deep
in the strong-coupling regime, this suggests that the
corresponding multichannel Kondo temperature is di-
rectly given by Ec, as shown schematically in Fig. 1.

To be able to describe the crossover at Ec and the
physics for T & Ec � TK we need a nonperturbative
method. We have found an exactly solvable limit of the
Hamiltonian (1) that confirms the previous calculations,
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FIG. 2 (color online). Entropy S�T� for TK=Ec � 400, 80, 40,
20, 8, 4 (bottom to top) with JNf � 1=4, % � 1 and a flat
density of states of half-width D � 2 (giving TK � 0:04). The
minimum of S is located at TS � 0:7

������������
EcTK

p
(crosses). For T �

TS and Ec � TK, the entropy is a function of T=Ec only (see
inset), which shows that Ec can be identified with the multi-
channel Kondo temperature Tmulti

K in this limit. The dotted line
in the inset denotes the exact value for S�T � 0� taken from
Ref. [12]. Note that in the regime 0:4Ec < T < TS, the impurity
specific heat C � TdS=dT is negative.

P H Y S I C A L R E V I E W L E T T E R S week ending
28 MAY 2004VOLUME 92, NUMBER 21
and also offers a direct computational tool to describe the
crossover from single-channel to multichannel physics as
a function of T and charging energy. The idea is to solve
the problem by taking both N and K to be large (we recall
that we have considered a generalized model with an
SU�N� quantum spin in the dot and K � %N interacting
leads coupled to it). The technical step is to notice that the
Kondo interaction in (3) can be decoupled using a single
bosonic field B��� conjugate to

P
k�f

y
ak� exp�i���.

Integrating out the leads, we obtain the following action
in imaginary time:
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X
�

�fyBei�����fB
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where & is a complex Lagrange multiplier used to enforce
the constraint on the spin size. We can introduce [12] two
fields Q��; �0� and Q��; �0� to decouple fermions from
bosons in the last term of (6). Then the fy and ��
variables are integrated out to obtain an effective action
S�B;Q;Q;&� which is proportional to N and there-
fore solved by a saddle point when N ! 1. Using time-
translational invariance and particle-hole symmetry (so
that & � 0), we obtain the self-consistent equations

Gf�i!n� � hfy�i!n�f�i!n�i �
1

i!n  B2Q�i!n�
; (7)

GX��� � hei����i��0�i; (8)

Q��� � %G0���GX���; (9)

Q��� � B2G0���Gf���; (10)

1

J
�

Z �

0
d� G0���GX���Gf���; (11)

where the condensate B is determined from Eq. (11) and
the correlator GX��� is computed from the action

S �
Z �

0
d�

�@���2

4Ec

�
Z �

0
d�

Z �

0
d�0 Q�� �0� ei����i���0�: (12)

In principle, the model (12) can be solved very efficiently
by Monte Carlo [13], but we have chosen to simplify the
numerics by using the spherical limit as an approxima-
tion to this rotor model. This is done by introducing a
further large M expansion, where we generalize ei� � X
with the constraint jXj2 � 1 to M fields Xi withPM

i�1 jXij
2 � M(see Ref. [11] for details). We then obtain

G1
X �i*n� � *2n=�4Ec� � +�Q�i*n�; (13)

GX�� � 0� � 1: (14)
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The parameter + is determined from Eq. (14), reflecting
the constraint jei�j2 � 1 in average.

We first investigate the general properties of the sys-
tem of Eqs. (7)–(11) and (13) and (14). For Ec � 0 we
recover nicely the usual large-N limit of the single-
channel Kondo model [14], since GX��� � 1 follows
from Eqs. (13) and (14) in this case. For Ec � 0, this
behavior also holds at Ec � T, reflecting the fact that the
single-channel Kondo fixed point controls the regime
Ec � T � TK. However, at T � 0 a low-frequency
analysis of our integral equations [11,12] shows the
appearance of universal power laws characteristic of the
multichannel fixed point [12], Gf�i!� � �1=i!�j!j1=�1�%�

and GX � 1=j!j1=�1�%�.
Our equations allow us also to calculate physical quan-

tities at intermediate coupling. Figure 2 shows the impu-
rity entropy, i.e., the difference of the total entropy and
the entropy in the absence of the spin. As predicted by
Eq. (5), there is a minimum in S�T� at the scale TS ’������������
EcTK

p
and the specific heat is negative for Ec & T < TS.

Close to the low-T fixed point the specific heat is positive.
Accordingly, the entropy drops below Ec and for T ! 0
reaches the finite value characteristic for the K-channel
fixed point [12]. The scaling plot in the inset of Fig. 2
shows that Ec can be identified with the multichannel
Kondo temperature Tmulti

K if Ec � TK, as discussed above.
ForEc > TK, we find only the free-spin solution withB �
0 and no multichannel physics. This is consistent with
Eq. (2), which shows that Tmulti

K drops rapidly to 0 forK !
1 if Ec > TK. For finite K and low T, multichannel
behavior is of course maintained for arbitrarily large Ec.

Although this thermodynamic analysis provides inter-
esting insights into the model considered here and the
general question of how long-range interactions can
216601-3
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FIG. 3 (color online). Conductance G�T� for Ec = 0.0001,
0.0005, 0.001, 0.002, 0.005, 0.01 (top to bottom) as in Fig. 2. For
T ! 0 and % � 1, G approaches the universal value G �
"G0=4. In contrast to the entropy (inset of Fig. 2), large
nonuniversal corrections spoil the one-parameter scaling with
T=Ec. Inset: Experimental setup suggested in Ref. [3]. Two
leads (1L and 1R) are connected to a voltage source, the other
‘‘leads’’ 2; 3 are large quantum dots with a charging energy Ec
and small level spacing �L � Ec, prohibiting charge transport
between 1 and 2; 3. Therefore, a mapping onto our Hamilton-
ian (1) with K � 3 is possible, where channel 1 arises from the
even combination of electrons [3,4] in 1L and 1R. However, fine
tuning is required [4] to obtain symmetric coupling to all leads
at lowest energies.
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destabilize zero-entropy fixed points, it is almost impos-
sible to measure the entropy of quantum dots. Therefore
we have also calculated the conductance through the dot
using a setup suggested by Oreg and Goldhaber-Gordon
[3], which is sketched in Fig. 3. In a situation where the
odd combination of electrons in leads 1L and 1R decouples
from the dot, the linear conductance can be calculated
from the imaginary part of the T matrix [4,15]:

G �
Ne2

2K" �h

Z
d!

@nF�!�

@!
ImG0�!�ImT�!�; (15)

T��� � B2GX���Gf���: (16)

For Ec � T � TK, the single-channel Kondo effect re-
sults in resonant scattering among the K equivalent leads
and therefore in a conductance G � �N=K�G0 � �1=%�G0

with G0 � e2=�2" �h�. For T � Ec � Tmulti
K , the conduc-

tance is governed by the multichannel T matrix which has
been calculated from conformal field theory by Parcollet
et al. [12] for arbitrary K and N. For K � N � 2 one
obtains G � G0, while in the large N limit one gets G �
G0 "=�2� 2%� tan�"=�2� 2%��.

We believe that all the results obtained in the previous
large N and K limit are qualitatively valid for the ex-
perimentally relevant case N � 2 and K � 2 or 3. First,
this is indicated by our perturbative expansion (4) for
T 	 Ec and Ec � TK which proves the existence of the
minimum in S�T� for arbitrary values of N and K.
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Second, the Coulomb blockade of the leads makes the
multichannel fixed point obviously stable against inter-
lead tunneling. Finally, we have verified our scenario for
K � 2 in a strong-coupling expansion of the Hamiltonian
(1), taking first the limit J ! 1 (and therefore TK ! 1)
and analyzing the resulting model for large Ec � J. In
this limit we recover a two-channel Anderson model
which can be mapped via a Schrieffer-Wolff transforma-
tion to the two-channel Kondo model.

In conclusion, we have shown that tiny charging ener-
gies in the leads, Ec � TK, can destabilize the single-
channel Kondo effect and induce a flow towards the
multichannel Kondo fixed point. While in systems with
local interactions the g theorem [7,8] guarantees that the
impurity entropy always decreases with decreasing T, in
our case it will rise for Ec & T &

������������
EcTK

p
. Our observa-

tion that the multichannel Kondo fixed point can be
stabilized even by small charging energies should help
to realize the experimental setup proposed by Oreg and
Goldhaber-Gordon [3]. To obtain a high multichannel
Kondo temperature Tmulti

K , parameters with Ec � TK
seem to be the most promising candidate (see Fig. 1).
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