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Orbital-Selective Mott Transitions in the Degenerate Hubbard Model
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We investigate the Mott transitions in two-band Hubbard models with different bandwidths.
Applying dynamical mean field theory, we discuss the stability of itinerant quasiparticle states in
each band. We demonstrate that separate Mott transitions occur at different Coulomb interaction
strengths in general, which merge to a single transition only under special conditions. This kind of
behavior may be relevant for the physics of the single-layer ruthenates, Ca2�xSrxRuO4.

DOI: 10.1103/PhysRevLett.92.216402 PACS numbers: 71.10.Fd, 71.30.+h
Hubbard model with different bandwidths. Using another
scheme of DMFT, we obtain a different result and an

small even for small systems, giving results in good
agreement with other numerical methods applied to the
Strongly correlated multiorbital electron systems are
among the most active topics in condensed matter
physics. In Mott insulators the addition of orbital to
localized spin degrees of freedom leads to complex phase
diagrams. In itinerant electron systems multiple Fermi
surface sheets appear with very distinct properties.
Subtleties occur when localized and itinerant electrons
coexist, as is well known in the case of itinerant d and
localized f electrons which give rise to the rich physics of
heavy Fermion systems. In view of their very different
character this coexistence is not surprising. We may ask,
however, whether the coexistence of itinerant and local-
ized electrons is possible for degenerate nonhybridizing
orbitals with small bandwidth differences.

A nearly degenerate d-electron system where multi-
orbital properties obviously play an important role is
the single-layer isovalent ruthenate alloy Ca2�xSrxRuO4

[1]. The end-member Sr2RuO4 is a well-known uncon-
ventional superconductor [2,3], while Ca2RuO4 is a Mott-
insulating S � 1 antiferromagnet [4,5]. The relevant 4d
orbitals belong to the t2g subshell. The planar structure
prevents hybridization between orbitals which have even
(dxy) and odd parity (dyz; dzx) under the reflection z !
�z. The complex evolution between these different end
members has led to various theoretical investigations
[5,6], and among others to the proposal that some of the
d orbitals display localized spin and orbital degrees of
freedom, and others provide itinerant electrons. This
orbital-selective Mott transition (OSMT) could explain
the experimental observation of a localized spin S � 1=2
in the metallic system at x� 0:5 which is difficult to
obtain from the entirely itinerant description [4,6,7].

The concept of the OSMT was recently challenged, in
particular, by Liebsch whose dynamical mean field
theory (DMFT) calculations suggested that two bands
of different width coupled by electron-electron interac-
tions would always undergo a common Mott transition
[8]. The aim of this Letter is to revisit this problem and to
analyze the Mott transition in the degenerate two-orbital
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OSMT. In addition, we show also that correlations can
stabilize a commensurate filling of one band even when
the total electron count is fractional.

We consider the following Hubbard Hamiltonian with
two orbitals:
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where cyi���ci��	 creates (annihilates) an electron with
spin ���"; #	 and orbital index ���1; 2	 at the ith site. We
restrict ourselves to the case of nonhybridizing orbitals,
relevant to the ruthenates, and t��	ij denotes the hopping
integral for orbital �, � the chemical potential, U (U0)
the intraband (interband) Coulomb interaction, and J the
Hund coupling. In the following, we impose the condition
U � U0 � 2J, obtained by symmetry arguments for de-
generate orbitals.

We examine the stability of the metallic ground state of
this model by means of DMFT which maps the lattice
model to the problem of a single-impurity connected
dynamically to a ‘‘heat bath’’ [9]. The electron Green’s
function is obtained via the self-consistent solution of
this impurity problem. We represent the two-electron
bands by semicircular density of states (DOS), ���x	 �
2=�D�

��������������������������
1� �x=D�	

2
p

where 2D� is the bandwidth. For
the case of identical hopping integrals for the two bands,
t��	ij � tij (D1 � D2), the role of orbital fluctuations has
been discussed in Refs. [10,11]. There are various methods
to solve the effective impurity problem. The quantum
Monte Carlo (QMC) simulations used by Liebsch [8]
suffer from sign problems at low temperatures, in par-
ticular, if the Hund coupling is included.We apply here the
exact diagonalization method proposed by Caffarel
and Krauth [12], whose finite-size effects are rather
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single-impurity model. Additionally, we treat the linear-
ized version of DMFT (two-site DMFT) [13], which
allows us to discuss electronic properties well even in
the vicinity of the critical point. We restrict our discus-
sions to the paramagnetic case to clarify the nature of the
Mott transition. In the following, the width of the nar-
rower band is used as the energy unit.

We first consider the case �1 � �2 � U=2�U0 �
J=2, i.e., both bands are half filled. The quasiparticle
weight Z�, defined by Z�1

� � 1� dRe����!	
=d! in
terms of the self-energy ���!	 of each band, will be
used to characterize the stability of the metallic state of
the two bands. The results obtained with fixed ratiosU0=U
and J=U are shown in Fig. 1 for half-filled bands. We first
focus on the case ofU � U0 and J � 0 [shown in Fig. 1(a)]
with bandwidths D1 � 1:0 and D2 � 2:0. When the
Coulomb interaction is turned on, the quasiparticle
weights Z1 and Z2 decrease from unity in slightly differ-
ent ways reflecting the difference of the bandwidth. A
strong reduction of the quasiparticle weight appears ini-
tially in the narrower band. However, when the system
approaches the Mott transition, the quasiparticle weights
merge again displaying a very similar dependence on U,
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FIG. 1. The quasiparticle weights Z1 and Z2 at half filling as a
function of the Coulomb interaction U: (a) U0=U � 1:0 (J � 0)
and (b) U0=U � 0:5 (J=U � 0:25). The bandwidth is set as
D1 � 1:0 and D2 � 2:0. Open (closed) circles represent the
results for orbital � � 1�2	 obtained by solving the DMFT
impurity problem by means of the exact diagonalization of a
small cluster �N � 6	. Solid triangles represent the Mott-
transition points obtained by the two-site DMFT method,
which produce the values quite consistent with those of the
numerical diagonalization. Insets show the same plot for band-
widths D1 � 1:0 and D2 � 5:0.
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and eventually reach zero at the same critical point. The
inset shows the more extreme case of D1 � 1:0 and D2 �
5:0 (very wide band). The common Mott transition origi-
nates from the enlarged symmetry inherent in U � U0

and J � 0, which will be discussed below. This result is in
agreement with the conclusion by Liebsch [8]. For small
interaction strengths the quasiparticle weight depends on
the effective Coulomb interactions U=D� which are dif-
ferent for two bands of different width, D� and yields a
distinct behavior of Z1 and Z2. In the vicinity of the Mott
transition, however, the effect of the bare bandwidth is
diminished due to the strong renormalization of the ef-
fective quasiparticle bandwidth allowing Z1 and Z2 to
vanish together [14,15].

The introduction of a finite Hund coupling J makes
U � U0 and leads to a qualitatively different behavior, as
seen in Fig. 1(b). With increasing U keeping the ratio
U0=U � 0:5 fixed, the quasiparticle weights decrease dif-
ferently and vanish at different critical points: Uc1 � 2:6
for Z1 and Uc2 � 3:5 for Z2. Therefore, we observe an
intermediate phase with one orbital localized and the
other itinerant, though strongly renormalized (Z2 � 1).
The analogous behavior is observed for different choices
of the bandwidths, if J takes a finite value [inset of
Fig. 1(b)]. Although it is difficult to precisely determine
the second critical point Uc2, this result certainly suggests
the existence of the OSMT with Uc2 > Uc1.

In Fig. 2 we show how the quasiparticle states evolve
and then disappear inside of the Mott-Hubbard gap. The
DOS is computed by the two-site DMFT scheme [13]. In
both cases the Mott-Hubbard gap develops as U increases
and is accompanied by narrow quasiparticle midgap
bands. For case (a) with J � 0, these quasiparticle bands
disappear simultaneously, whereas for case (b) with finite
J, they have different critical points, consistent with the
results mentioned above.

Repeating similar DMFT calculations for various
choices of the parameters, we derive the ground-state
phase diagram shown in Fig. 3, which displays some
remarkable features. First, the metallic phase (I) remains
stable up to surprisingly large Coulomb interaction U
when U ! U0 (small J). Here the Mott transitions merge
to a single transition. This behavior originates from the
high symmetry when U � U0 (J � 0) with six degenerate
two-electron onsite configurations: four spin configura-
tions with one electron in each orbital and two spin
singlets with both electrons in one of the two orbitals.
The additional symmetry in orbital/spin degrees of free-
dom enlarges the phase space for charge fluctuations and
leads to a decrease of the Mott-Hubbard gap Eg at large
U. A rough estimate of Eg can be obtained from the
second moment of the hopping Hamiltonian for a state
jai with an extra electron (or hole). In hajH2jai � T2 all
possible configurations with the same onsite energies are
considered as intermediate states [16]. Because all charge
excitations mix with each other, there is only one gap.
Assuming a staggered spin or orbital configuration as the
216402-2
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FIG. 3. Phase diagram for the two-orbital Hubbard model
with D1 � 1 and D2 � 2. In the phase (I) [phase (II)], both
bands are in the metallic (insulating) state. The phase (III) is
induced by the orbital-selective Mott transition, where the
metallic state coexists with the Mott insulating state. Since
we are concerned with the ferromagnetic Hund coupling, J >
0, the relevant region in the diagram is U > U0.
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FIG. 2. The density of states ���!	 at half filling: left (right)
panels for � � 1 (2). (a) U0=U � 1:0 (J � 0) and (b) U0=U �
0:5 (J=U � 0:25). It is clearly seen that the Mott transitions
occur simultaneously in (a), while the orbital selective tran-
sitions occur in (b).
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most dominant local correlation for neighboring two-
electron sites we obtain for the effective hopping matrix
element of an extra carrier T �

��������������
t21 � t22

q
. This allows us

to estimate the Mott-Hubbard gap at large U:

Eg � U� 2zT � U� 2z
��������������
t21 � t22

q
; (2)

where z is the coordination number. We can get a simple
estimate of Uc by setting Eg ! 0 leading to values Uc �
2D1

���
2

p
(for D1 � D2) and Uc � 2D1

���
5

p
(for 2D1 � D2 ).

Both estimates are enhanced relative to the single-band
case Uc � 2D [11].

Away from the symmetric limit, i.e., U > U0 (2J �
U �U0) orbital fluctuations are suppressed and the spin
sector is reduced by the Hund coupling to three onsite
spin triplet components as the lowest multiplet for two-
electron sites. Applying the same scheme as above, we
recognize that charge excitations with two electrons in
one or the other of the orbitals do not mix, since all
hopping processes included in (1) preserve orbital con-
figurations in the lowest multiplet sector. The effective
hopping for each orbital is now T� � t�=

���
2

p
assuming a

staggered spin-1 state at half filling. The reduction com-
pared to the single-band case occurs due to the locking of
the spins into an onsite spin triplet. If we consider again
the case 2D1 � D2 we find two separate Mott transitions
with critical values
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In between the two transitions we find the metallic inter-
mediate phase (III) with one band localized and Mott
insulating and one band itinerant. Within our DMFT
scheme we have also confirmed that various choices of
bandwidths give rise to the qualitatively same structure of
the phase diagram as shown in Fig. 3.

Our result for the Mott transitions is different from that
of both Anisimov et al. and Liebsch [7,8]. The former
group derived an OSMT for a special model which in-
cludes only the intraband Coulomb repulsion U within the
DMFT approach, and drops effects due to coupling be-
tween the orbitals. This scheme was criticized by Liebsch,
who took into account U, U0, and J. He claimed based on
a DMFTanalysis that only a single Mott transition occurs
in the generic case. Liebsch’s solution of the single-
impurity problem within DMFT is based on QMC and
iterative perturbation methods. The former suffers from
sign problems which limit its validity at low tempera-
tures, while the latter is an extrapolation from the small-U
regime. Therefore this method may obscure the observa-
tion of separate Mott transitions for the system with small
Hund coupling, where two transition points are very close
to each other. Our DMFT analysis which uses the exact
diagonalization of the impurity problem on a finite cluster
is valid at zero temperature and is not restricted to weak
coupling. It shows separate Mott transitions, except for
the special case with high symmetry U � U0 (J � 0), for
which the transitions merge irrespective of the different
bandwidths.

We have so far treated the case of two individually
half-filled bands. We now address the question of what
will happen when the electron count is nonstoichiometric.
This may be a further key problem to understanding the
OSMT in Ca2�xSrxRuO4 [4], since all three original
metallic bands possess fractional filling. In order to study
216402-3
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FIG. 4. (a) The density of states �1�!	 and �2�!	 for finite
hole doping, � � 0:1. The Coulomb interaction is chosen as
U � 0; 2:0; 3:0, and 4:0 �U0 � 0:5U and J � 0:25U	 from the
top to the bottom. (b) The number of electrons in the orbital
�� � 1	 as a function of U when U0 � 0:5U and J � 0:25U.
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this kind of system, we introduce a finite hole doping,
and observe how commensurability can emerge due to
interactions.

In Fig. 4(a) we show the DOS which is computed by
using the two-site DMFT. With increasing interactions
quasiparticle states with large DOS appear around the
Fermi energy in both bands. Enhancing the interactions
further we drive the first band insulating. This is in
contrast to the single-band system, where finite hole
doping obscures the Mott transition and always gives
metallic behavior. In the two-band system, however, com-
mensurability in one of the bands gradually emerges, as is
clearly seen in Fig. 4(b). The electron number for the first
band n1 is plotted here. When U � 0, n1 and n2 �� 1�
�� n1	 are smaller than 0.5 because of finite hole doping
(� � 0:1). Coulomb interaction causes electron transfer
from one orbital to the other, giving rise to one half-
filled band at a certain interaction strength, thereby caus-
ing an OSMT.

In conclusion, we have discussed the Mott transitions
in the degenerate Hubbard model with nonhybridizing
orbitals and different bandwidths using DMFT. A single
Mott transition occurs when the Hund coupling is absent
(U � U0), rendering the different bandwidth essentially
irrelevant at the transition point, as discussed by Liebsch.
In the more generic situation with finite Hund coupling,
however, we find the OSMT. This remains true for non-
stoichiometric systems. We believe that our study resolves
the apparent contradictions on this issue and sheds light
on the nature of this kind of Mott transitions. In real
216402-4
materials, Hund coupling between orbitals as well as the
Coulomb interactions are present. Therefore, the OSMT
should occur depending on the interaction, the band
structure and filling, etc. A direct comparison with
Ca2�xSrxRuO4, however, is inappropriate here, since the
number of bands is different from two orbitals discussed
in our model. Taking into account three bands in combi-
nation with accurate band structure information and real-
istic parameters �U;U0; J	, in order to clarify the behavior
of this complex material, is under investigation at present.
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