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Shear Band Formation in Granular Media as a Variational Problem
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Strain in sheared dense granular material is often localized in a narrow region called the shear band.
Recent experiments in a modified Couette cell provided localized shear flow in the bulk away from the
confining walls. The nontrivial shape of the shear band was measured as the function of the cell
geometry. First, we present a geometric argument for narrow shear bands that connects the function of
their surface position with the shape in the bulk. Assuming a simple dissipation mechanism, we show
that the principle of minimum dissipation of energy provides a good description of the shape function.
Furthermore, we discuss the possibility and behavior of shear bands that are detached from the free
surface and are entirely covered in the bulk.
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FIG. 1. Setup geometry. The rotating (white) and the sta-
tionary (gray) parts induce shear flow in the granular material
sensitive to changes of the slip radius Rs. The fact that Rc held by the container.
Granular media constitutes an interesting field of re-
search from the point of view of both basic science and
application. The intrinsically nonlinear and dissipative
nature of the interaction between the particles leads to a
great deal of interesting phenomena, including force net-
works, different kinds of instabilities, clustering, and
complex flow properties [1,2]. One of the most apparent
instabilities occurring in granular media is the formation
of shear bands: At a slow shear rate, strain is not distrib-
uted throughout the sample but appears in a localized
fashion along a rather narrow interface between two
essentially unstrained parts. Shear banding was the sub-
ject of various experimental and theoretical studies in the
last few years [1,3–8] and still presents significant diffi-
culties for theoretical descriptions.

Recently, universal geometrical properties of shear
bands were discovered in a Couette geometry modified
such that shear localization near boundaries was avoided
[9,10]. The experimental setup was a cylindrical container
filled with grains up to height H. The bottom was split
into an outer ring rotating with the container wall and a
stationary disk of radius Rs in the center (Fig. 1) [11]. Thus
the outer and the inner part of the material were rotated
relative to each other, which created a shear band with
cylindrical symmetry: It started at the perimeter of the
stationary bottom disk and extended through the bulk up
to the free surface. On the surface, the angular velocity of
the granular material as the function of the radius was
measured. It follows with high accuracy an error function
characterized by two parameters: the width W and the
center position Rc of the shear zone. The width grows
with increasing height H while the radius Rc gets smaller.
Interestingly, the surface position Rc proved to be very
robust; it depends only on two length parameters H and
Rs, but not on the particle properties nor on the shear rate.
This is contrary to the width of the band, which is
affected by the size and shape of the grains but is in-
0031-9007=04=92(21)=214301(4)$22.50 
and W depend on different control parameters suggests
that the two quantities can be studied separately.

In this Letter we address the problem of the position of
the shear band. By suitable choice, e.g., of the particle
size, the width can be made arbitrarily small compared to
H and Rs. This justifies one to model the shear band as an
infinitely thin layer that represents the boundary between
two blocks of material within which no flow occurs. We
derive the shape of the band from a variational principle.
Note that optimization principle was applied already to
shear band formation in a different context [6].

Surface-bulk relation.—In the experiments the position
Rc�Rs;H� on the free surface was found [10] to scale as

Rc�Rs;H� � Rs�1� �H=Rs�
��; (1)

with � � 2:5 for the experimentally accessible values of
H=Rs. It is much more difficult to measure the position of
the shear band in the bulk, r�h�, for fixed Rs and H.
Nonetheless, the experimental data clearly show that the
bulk profile follows another form than Rc�Rs;H�, and the
bulk radius at height h depends also on the filling height
H (Fig. 2).
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FIG. 2. The symbols are experimental data showing the shear
zone radius r measured in the bulk at height h, taken from [10].
+, 	, and 
 correspond filling heights 25, 37, and 49 mm,
respectively; Rs is 95 mm. The rectangle in the middle shows
the estimated errors in both directions for all data [12] (plotted
only for one data point). The solid line is the experimentally
found fit curve for the surface positions. The dashed lines are
the calculated bulk positions based on the solid curve.
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We show that the bulk profile is determined once the
surface positions Rc�Rs;H� are given. Let us take a sys-
tem with total height H and find the position of the shear
band r at height h < H. The subsystem above h can be
regarded as a smaller system with height �H � h� and
with slip radius r at the bottom. Pressure and boundary
conditions are the same, and the difference in the width
is neglected in the narrow band approximation. We con-
clude that

Rc�Rs;H� � Rc�r;H � h�: (2)

Knowing the function Rc�Rs;H� thus allows one to cal-
culate the shape r�h� of the shear band throughout the
whole system. Note: if the simple size scaling holds for
the surface radius that Rc=Rs depends only on H=Rs (as it
was found in [10]), then it follows immediately also for
the bulk function due to Eq. (2):

r
Rs

� f
�
H
Rs

;
h
Rs

�
: (3)

Based on Eq. (2), an explicit functional form of the bulk
profile can be obtained using the experimental fit function
of Rc:

h � H � r
�
1�

Rs

r
�1� �H=Rs�

��

�
1=�

: (4)

The resulting curves for some filling heights are plotted in
Fig. 2 using � � 2:5, and the comparison with the ex-
perimental data shows very good agreement.

Variational principle.—In order to describe the form
of the shear band, our idea is to apply the principle of
least dissipation [13] (which is a common treatment of
time-independent irreversible phenomena [14]). There-
fore we require a steady state flow that matches the
214301-2
outer constraints but provides the minimum rate of en-
ergy dissipation.

Applying this to the cylindrical geometry within the
narrow band approximation, the question of the shape is
traced back to a variational problem among the functions
r�h� (where H and Rs are kept fixed), with the condition
r�0� � Rs, while the other boundary at H is free. The
dissipation rate is given by the sliding velocity r�h�!
between the two sides times the shear stress �tn integrated
over the whole shear band. Up to a constant factor, the
expression to be minimized is

Z H

0
r2

����������������������������
1� �dr=dh�2

q
�tndh � min (5)

This quantity represents not only the dissipation rate but
also the mechanical torque that the rotating and station-
ary part of the system exert on each other. Therefore the
least dissipation for this specific geometry is equivalent
to the minimal torque, which gives further justification of
this approach; it is plausible that the yielding surface is
established where the resistance against the outer con-
straint is the smallest, i.e., where the material is the
weakest [6].

Sliding model.—For the shear stress in Eq. (5), we will
use a very simple sliding model. The shear stress in the
yielding surface is taken similar to the Coulomb friction
between two solid bodies: It acts against the sliding
direction, its magnitude proportional to the normal pres-
sure pressing the two sides against each other, but it is
independent of the sliding velocity. We assume hydro-
static pressure, i.e., proportional to the depth [15]. Thus
Janssen effect is neglected, which is naturally justified if
H is smaller than the container width. In our dynamical
situation, however, we expect that the applicability of the
hydrostatic pressure can be extended even for larger fill-
ing heights. The shear band (due to many collisions and
slip events) acts as a source of small vibrations in the
whole system and can cause slight creep at the particle-
wall contacts, inhibiting the particles ability to keep
their original anchoring position. Finally, they transmit
their load to the next particle below rather than to the side
wall, and therefore the whole weight will be carried by
the bottom. This sliding model leads to the variational
problem:

Z H

0
r2

����������������������������
1� �dr=dh�2

q
�H � h�dh � min: (6)

The solutions that minimize the integral automatically
have the scaling property given by Eq. (3). The reason
of this data collapse is that taking a � times larger sys-
tem [i.e., taking �Rs, �H, and �r�h=�� instead of Rs, H,
and r�h�] changes the value of the integral only by a
constant factor (�4), thus it represents the same varia-
tional problem.

Numerical results.—The function r�h� is discretized
and the minimization is performed numerically based
214301-2
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on genetic optimization: r�h� is varied randomly, but only
the changes that lower the value of the left-hand side of
Eq. (6), i.e., reduce the dissipation, are admitted. During
the optimization, the noise level is continuously de-
creased and the final state r�h� is regarded as one local
minimum of the variational problem. The landscape
where the minimum has to be found is simple (see later).

Results shown in Fig. 3 reproduce nicely the qualitative
behavior found in the experiment: the concave shear
bands appear in the bulk and build up a convex confining
shape of the surface positions as the filling height is
varied. The shear radii at a fixed bulk height h and also
at the top get smaller with increasing filling height.

The realistic bulk profiles provided by the principle of
minimum dissipation can be interpreted easily. The bene-
fit gained by having such a curved cylindrical shape
(slimmer at the top) in place of a regular cylinder is
twofold: First, the surface of the shear band can be
reduced by letting the regular cylinder deform and by
pulling the shape a bit towards the center at a fixed bottom
radius, similar to a soap membrane spanned between a
ring and a plate, where the plane of the ring is parallel to
the plate. Second, smaller radius results in smaller sliding
velocity (or, thinking of minimizing the torque, it repre-
sents smaller lever). Therefore one can roughly think of
the bulk profiles shown in Fig. 3 as equilibrium situations
where the reduction of the sliding velocity is counter-
balanced by the increase in the surface, due to going
beyond the minimum surface.

The quantitative agreement with the experimental fit
function [Eq. (1)] is also surprisingly good, given the
crude assumptions we made and the fact that our model
contains no free fit parameters. The difference of the
theoretical and the experimental values of Rc is less
than 20% of Rs � Rc.

We can more easily analyze the limit H=Rs ! 0 than
in the experiment, where Rs values are limited by the
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FIG. 3. Results obtained from the variational principle.
Symbols show bulk profiles; from top to bottom H=Rs �
0:15, 0.25, 0.35, 0.45, and 0.55, respectively. The two lines
denote the surface positions as the function of the total height.
The dashed line comes from our model; the solid line is the
experimental fit function.
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container size and a power law fit to the data at low filling
heights is not very precise. From our variational prin-
ciple, we find an exponent � � 2 for small H=Rs. In the
region 0:4<H=Rs < 0:7, there is no clean power law any
more, and the effective exponent increases. In our model
this seems to be due to a phase transition at about H=Rs �
0:7 to a different shape of the shear band, which we
discuss next.

What is the predicted behavior of the shear band for
filling heights larger than those reported in [9,10]? For
large enough H=Rs, the class of the ‘‘open’’ solutions
discussed so far is replaced by a new type of solutions:
The shear band, instead of running up to the free surface
and having a circle on the top as its upper edge, closes
forming a cupolalike shape (still with bottom radius Rs).
In that case, the material covered by the ‘‘closed’’ shear
band is at rest while the material around and above
(including the whole free surface) is rotating. Several
open and closed profiles can be seen in Fig. 4(b), obtained
for various values of H. Figure 4(a) shows the upper
radius of the shear bands, which is characteristic of the
open solutions but becomes zero for the closed ones. For
these cupola shapes [16], a more relevant parameter is
their heights htop � H in the center, plotted in Fig. 4(c).
For open profiles, htop equals simply the system height.

Interesting is the behavior of the parameter htop. It is a
monotonically decreasing function of the filling height,
once it is detached from H; i.e., large filling heights press
the shear band to the bottom. Solving the Euler-Lagrange
equation for the variational problem, neglecting terms of
higher than first order in dh=dr and taking the limit of
H  htop, one obtains

h�r� � htop �
1

6H
r2; htop �

1

6H
R2
s : (7)

Figure 4(d) shows the numerical solution of htop; it is
in excellent agreement with the approximate analytical
1

0.4

0.2

0
1.00.50

R
c/

R
s

H/Rs

(a)
1

0.4

0.2

0
0.60.40.20

r 
/ R

s

h/Rs

(b)

0.4

0.2

0
1.00.50

h t
op

/R
s

H/Rs

(c)
1

0.01

100101

h t
op

/R
s

H/Rs

(d)

Rs / (6 H)

FIG. 4. Open and closed shear bands with cylindrical
symmetry. (a) upper radius, (b) bulk profiles for several fill-
ing heights (0<H=Rs < 7), and (c),(d) height of the shear
band htop.
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FIG. 5. Hysteresis emerging in the variational problem. Upper
radius (a) and height (b) of the shear band in units of Rs. The
dashed line denotes the transition of the global minimum.
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solution. In the limit H=Rs ! 1 the material forms one
solid block and the sliding occurs on the surface of the
bottom disk.

The H dependence of htop has the following reason:
Larger h corresponds to lower pressure and thus to
smaller shear resistance; therefore it is worth it to raise
the shear band into a cupola shape, even if its surface
becomes larger than the disk at the bottom. Note, how-
ever, that stronger gravity would not affect the shape; it
gives a larger pressure gradient, but this constant factor
has no impact on the variational problem. By contrast,
increasing H (or, alternatively, applying additional pres-
sure at the surface) makes the relative pressure change
smaller near the bottom, which results in weaker uplift-
ing ‘‘force.’’ This is why the cupola height htop approaches
zero for large H (respectively large pressure).

At intermediate H (around 0:7Rs) there exists a small
region of filling heights where the variational problem
[Eq. (6)] exhibits two local minima. The behavior of the
local minima corresponds to a first order phase transition,
where the two phases are the two types of shear band
profile (Fig. 5). Following the closed solution as H is
decreased, its height grows until the top of the cupola
reaches the surface at system height H1. At this point the
closed solution becomes unstable; Rc at the top runs
suddenly to a nonzero value [Fig. 5(a)]. Regarding the
other direction (increasing H), the upper edge of the open
shape is pulled towards the center. Then at height H2 it
shrinks to one point, which is followed by a jump into a
closed shape [discontinuity in htop; see Fig. 5(b)]. The
interval �H1; H2� defines the region where two local min-
ima exist; outside this region there is only one phase
possible. Local minima are physically meaningful in
the presence of a kinetic barrier. The latter can be pro-
vided by the difference between the static and dynamic
friction coefficients, usually present in granular systems.

In this Letter we have presented a theoretical analysis
of recent experiments [9,10] on shear band formation in
granular media. We used the approximation of narrow
shear bands. First, we showed a geometric argument,
which related the position of the surface end points of
the band to the bulk shape. We calculated the shape of
shear bands from a variational principle, and the results
are in good agreement with the experiments. The theory
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provides with a number of predictions. (i) There is a
transition in the shape of the shear band as a function
of the filling height H: For low values of H, the shear
band is an open curved cylinder which ends on the sur-
face, while for large H a cupola is formed. (ii) This
transition is of the first order, accompanied by a hystere-
sis. (iii) The height of the cupola is proportional to Rs=H.
These predictions should be experimentally accessible.

An interesting question we did not address in this
Letter is the nucleation kinetics at the first-order phase
transition from open to closed shapes. It is conceivable
that the finite width of the shear bands plays a role
here. Further progress in this direction requires a contin-
uum theory going beyond the narrow band approximation
used here.

We would like to thank to D. Fenistein and M. van
Hecke for useful discussions. Partial support by Grant
No. OTKA T035028 and by the German-Hungarian
Cooperation Fund is acknowledged.
[1] Physics of Dry Granular Media, edited by H. J.
Herrmann, J.-P. Hovi, and S. Luding (Kluwer
Academic Publishers, Dordrecht, 1998).

[2] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 (1996).

[3] D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. Eng,
S. R. Nagel, and H. M. Jaeger, Nature (London) 406, 385
(2000).

[4] R. R. Hartley and R. P. Behringer, Nature (London) 421,
928 (2003).

[5] P. A. Thompson and G. S. Grest, Phys. Rev. Lett. 67, 1751
(1991).

[6] J. Török, S. Krishnamurthy, J. Kertész, and S. Roux,
Phys. Rev. Lett. 84, 3851 (2000).

[7] J. Schwedes, Granular Matter 5, 1 (2003).
[8] D. Howell, R. P. Behringer, and C. Veje, Phys. Rev. Lett.

82, 5241 (1999).
[9] D. Fenistein and M. van Hecke, Nature (London) 425,

256 (2003).
[10] D. Fenistein, J.W. van de Meent, and M. van Hecke,

Phys. Rev. Lett. 92, 094301 (2004).
[11] The experiments [9,10] were performed both with ‘‘disk’’

geometry and with a spit-bottomed Couette geometry,
where an additional stationary inner cylinder is present.
In this Letter only the disk geometry is discussed.

[12] M. van Hecke (private communication).
[13] L. Onsager, Phys. Rev. 37, 405 (1931); Phys. Rev. 38, 2265

(1931).
[14] K. E. Reichl, A Modern Course in Statistical Physics

(John Wiley, New York, 1998), 2nd ed.
[15] Here we ignore anisotropy effects.
[16] The closed profiles appear in the integral of Eq. (6) in

the way that the function r�h� becomes zero for htop �
h � H. Therefore this region has no contribution to the
dissipation, and practically, the integral is meant over the
interval �0; htop�.
214301-4


