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Relativistic and QED Corrections for the Beryllium Atom
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Complete relativistic and quantum electrodynamics corrections of order �2 Ry and �3 Ry are
calculated for the ground state of the beryllium atom and its positive ion. A basis set of correlated
Gaussian functions is used, with exponents optimized against nonrelativistic binding energies. The
results for Bethe logarithms lnk0�Be� � 5:750 34�3� and lnk0�Be

�� � 5:751 67�3� demonstrate the
availability of high precision theoretical predictions for energy levels of the beryllium atom and light
ions. Our recommended value of the ionization potential 75 192:514�80� cm�1 agrees with equally
accurate available experimental values.
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scribed in detail in our former work on lithium atom can be expressed as an expectation value of some effective
High precision calculations of atomic energy levels and
transition rates allow for accurate QED tests and for
determination of fundamental physical constants.
Hydrogen, helium, and recently lithium have been a
subject of intensive theoretical research. The hydrogen
spectrum is known up to order �5 Ry [1,2], which in-
cludes two- and three-loop self-energy corrections. At
present, the accuracy is limited by the uncertainty in
the proton electric charge and magnetic moment distri-
bution. For the helium atom, all corrections up to order
�4 Ry have recently been completed for S and P states
[3–5]. Moreover, for helium fine structure the dominant
�5 Ry corrections have been recently evaluated [6,7], and
significant discrepancies with experiments [8,9] have
been observed. For the lithium atom, the nonrelativistic
energy and leading relativistic corrections, as well as
nuclear recoil effects have been calculated most precisely
by Yan and Drake in a series of papers [10]. Recently, the
leading QED corrections, of order �3 Ry to the binding
energy of the lithium ground state have been completed
by two groups [11,12]. For the beryllium atom theoretical
results are much less accurate in comparison to lithium
and helium. The accurate nonrelativistic energy of the Be
ground state was calculated first by Sims and Hagstrom
[13] to be �14:666 54 a:u:, later by Bunge [14] to be
�14:667 358�28� a:u:, and the most accurate energy so
far is �14:667 355 627 a:u:, found by Komasa [15].
Relativistic corrections have been calculated by Liu and
Kelly [16], Lindroth et al. [17], and the most accurate
results have been obtained by Chung et al. [18], where
additional QED effects have been partially included. In
this Letter we present a complete calculation of both:
relativistic �2 Ry and radiative �3 Ry corrections to the
21S0 ground state of the beryllium atom and 22S1=2
ground state of the singly ionized beryllium ion. The
calculational method applied in this work uses a corre-
lated basis set of Gaussian functions (ECG). It is de-
0031-9007=04=92(21)=213001(4)$22.50 
[12]. However, a new integral representation of the
Bethe logarithm and a new regularized formula for sev-
eral singular operators, including P�1=r3� distribution,
allowed us to obtain an accurate numerical result for
QED effects. The use of the ECG basis set enables essen-
tially exact incorporation of electron correlations and at
the same time all matrix elements can be calculated
analytically. The only approximations performed are ex-
pansions in � and in the electron-nucleus mass ratio. The
first terms of the � expansion of binding energy are the
relativistic and radiative (QED) corrections
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where E0 is the nonrelativistic energy corresponding to
the Hamiltonian (in atomic units)
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where M and 	 are the nuclear and the reduced mass,
respectively. The relativistic correction EREL is the expec-
tation value of the Breit-Pauli Hamiltonian with the non-
relativistic wave function and we now allow the nuclear
mass to go to infinity, as the relativistic recoil corrections
are not significant at the aimed level of accuracy. The
nonvanishing terms of Breit-Pauli Hamiltonian [19] are
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where si is a spin operator for a particle i. In general,
additional spin-orbit and spin-spin terms are present,
but they vanish for S states. Also the si � sj��rij� term
reduces to �3=4��rij�. The QED (radiative) corrections
2004 The American Physical Society 213001-1
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operators and the Bethe logarithm lnk0 [20,21]
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Here, Z is the atomic number, m the electron mass, and �
means the Dirac delta function. The distribution P is
defined as the limit
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with � and � being the step function and the Euler
constant, respectively. The n-electron Bethe logarithm,
lnk0, is defined by

lnk0 � �
1

D
h�jr�H0 � E0� ln�2�H0 � E0��rj�i; (6)

r �
X
i

ri; (7)

D � 2�Zh�j
X
i

��ri�j�i: (8)

The nonrelativistic energies, as well as relativistic and
radiative corrections are calculated with exponentially
correlated Gaussian (ECG) functions [22]. The wave
function � is expressed in the form of K-term linear
combination of the multielectron basis functions  l�r�

��r;�� � ÂA

�
�S;MS

���
XK
l�1

cl  l�r�
�
: (9)

The operator ÂA ensures the antisymmetry of the total
wave function with respect to the exchange of the elec-
trons. The �S;MS

��� is an n-electron spin eigenfunction
with the quantum numbers S and MS, and � and r are the
n-electron vectors in spin and coordinate space. The spa-
tial basis functions are the n-electron atomic Singer func-
tions [23] of S and P symmetry, respectively:

 l�r� � exp��rAlrT�; (10)

~  l�r� � ri exp��r ~AAlrT�; (11)

with ri being the coordinate of the ith electron. The linear
parameters cl are obtained by the standard inverse itera-
tion method. The nonlinear parameters collected in the
positive definite matrices Al are determined variationally
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in an extensive optimization process. The minimization
functional is the expectation value of H0 if the wave
function of a state is to be obtained, or the other func-
tional, given in Eq. (21), for the calculation of Bethe
logarithm. The final results of the optimization are shown
in Table I. It is worth noting that the ground state energy
of Be presented in this table is the most accurate non-
relativistic value to date.

We recall here that with the ECG functions the cusp
condition at the nucleus can never be fulfilled. This results
in slow convergence of the expectation value of the rela-
tivistic operators appearing in Eqs. (3) and (4). One way
to overcome this problem is to transform these matrix ele-
ments to an equivalent, but more regular form, which
has much better numerical convergence. An example
of such regularization for the Dirac � function was
given by Drachman [24]. He expressed the expectation
value of ��rjk� in an equivalent form containing global
operators, namely
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where V̂V �
P
i>j1=rij �

P
iZ=ri. In a similar way, the

relativistic kinetic energy term can be expressed by

h�jr4
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The expectation values of various components of HREL

are shown in Table I. Their contribution to the uncertainty
of the total energy is much below that of E0; see Table II.

The calculation of the radiative correction is more
subtle and it is the main subject of this work. The expec-
tation value of P�1=r3ij� in the ECG basis computed di-
rectly has a very slow numerical convergence. For this
reason, we transform it to a much more regular form, in a
similar way as for ��rij�. One finds a function, for which
r2 gives P�1=r3ij�,
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The singular operators are no longer present, and the �
function is handled according to Eq. (12). The numerical
213001-2



TABLE I. Expectation values of various operators with nonrelativistic wave function of
beryllium atom (K � 3600) and its positive ion (K � 2000) in atomic units. Implicit summa-
tion over i and over pairs i > j, respectively, is assumed. The result for the nonrelativistic
energy of Be� is in agreement with that obtained in Ref. [25], which is �14:324 763 176.

Be Be�

hH0i �14:667 355 627 �14:324 763 152
hr2i �30:255 167�4� �29:555 364
h��ri�i 35.368 90(2) 35.105 022
h��rij�i 1.605 303(1) 1.580 538
hpi � pji 0.460 228(2) 0.452 919
hp4

i i=8 270.704 68(25) 268.316 415
hr�1
ij pi � pj � r�3

ij rij �rij � pi�pj �i 1.783 65(2) 1.819 811
hP�1=r3ij�i=4� �0:583 03�5� �0:597 973

lnk0 5.750 34(3) 5.75167(3)
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convergence is improved by 3 orders of magnitude, well
under the aimed precision (see Table I). The price one pays
is more complicated integrals, which, however, can be
performed analytically in terms of elementary and
Clausen Cl2 functions. The calculation of the Bethe loga-
rithms [27] is the most numerically intensive part of this
work. Details of such calculations with the ECG functions
have been presented in the former work devoted to lith-
ium atom [12]. Here we emphasize three most important
elements. The first one is the use of the following compact
integral representation of Bethe logarithm

lnk0 �
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and D is defined in Eq. (8). This integral representation
exhibits better numerical convergence than former ones
[27], and we found that the integration over 200 equally
TABLE II. Components of the total binding e
energy in cm�1. SMS and NMS subscripts
respectively, and remaining energy components
cal constants are from [26].

Be

E0 �3 219 112:469�70�
ENMS 195.986
ESMS 6.150
�2EREL �518:028�5�
�3EQED 74.576
�4�EQED 3.388

Total E �3 219 350:398
E� E0 �237:928
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spaced points allows for relative accuracy of the order of
10�6. The second important element is the optimization
of nonlinear parameters in ECG functions, Eq. (11), for
several values of !. It is achieved by the minimization of
the Hylleraas functional

J � ~��� � h ~��jH0 � E0 �!j ~��i � 2h ~��jrj�i: (19)

This optimization ensures that the integrand in Eq. (18) is
calculated with sufficient accuracy. The exceptions are
points at very low t. Here, following Schwartz [27], we
perform a small t expansion

f�t� � f0 � f2t
2 � f3t

3 � f4t
4 ln�t� � o�t4�; (20)

where

f0 � �hr2i; f2 � �2D;

f3 � 8ZD; f4 � 16Z2D;
(21)

and fit higher order coefficients to the calculated f�t�.
This was the third important element in the calculation
of the Bethe logarithm. The overall accuracy for lnk0 is of
the order 10�5, see Table I, and the limiting factor is the
fitting procedure.
nergy for 9Be atom and ion, and ionization
designate specific and normal mass shift,
are defined by Eqs. (1)–(4) and (24). Physi-

Be� IP

�3 143 922:112�6� 75 190:357�70�
191.408 �4:578

6.052 �0:098
�510:614 7.414(5)

74.020 �0:557
3.362 �0:025�5�

�3 144 157:884 75 192:514�80�
�235:772 2.157(10)
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While we obtain the complete radiative correction of
order �3Ry, higher order terms become the source of
uncertainty of theoretical predictions. We calculate them
on the basis of the known result for the binding one-loop
correction to the hydrogen Lamb shift [1],

�EQED � 4�Z2

�
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�

5

192
�

ln�2�

2

�
h�j

X
i

��ri�j�i

(22)

and estimate uncertainty for remaining terms to be 20%
of �EQED.

We have repeated the whole calculations for Be� in
order to compute the ionization energy. Results are
summarized in Tables I and II. Final theoretical predic-
tions for the ground state ionization energy of 9Be are
now accurate up to 0:08 cm�1. The uncertainty comes
almost exclusively from the nonrelativistic binding en-
ergy of Be. We have estimated the uncertainty of E0 by
a reanalysis of the former data in [28] and obtained it
from the K�2 fit to energies calculated with optimized
basis sets of length K.

Let us now turn to the physical consequences of the
obtained result. First of all, we have demonstrated the
availability of high precision theoretical predictions for
energy levels of beryllium atom and light berylliumlike
ions. Two experimental results [29,30] for the ionization
energy

'Eexp1 � 75 192:50�10� cm�1; (23)

'Eexp2 � 75 192:64�6� cm�1; (24)

agree well with equally accurate theoretical predictions;
see Table II. This precision of the theoretical result can be
still improved by having more accurate nonrelativistic
binding energies. The relativistic and QED parts are
calculated with much higher precision of 0:005 cm�1.
While ECG functions can be further optimized, the
challenge is the use of a more effective correlated basis
set. It is interesting to note that in spite of an increase of
computer power, no significant advances in the precise
calculation of nonrelativistic energies of four and more
electron atoms have been observed. Some steps in this
direction have been achieved by Sims and Hagstrom [31]
with a variant of exponential basis sets. We are pursuing
ECG functions with linear in rij factors, and several
promising results have already been obtained for the
helium atom [32]. In a similar approach the nuclear recoil
effects or the hyperfine splitting of excited states can be
obtained with comparable precision, opening the window
for the high precision determination of nuclear size,
magnetic dipole, and electric quadrupole moments for
various isotopes of beryllium.
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