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Quantum phase transitions in mesoscopic systems are studied. It is shown that the main features of

phase transitions, defined for infinite number of particles, N — oo, persist even for moderate N ~

10. A

Landau analysis of first order transitions is done and a “critical” exponent at the spinodal point is
defined. Two order parameters are introduced to distinguish first from second order transitions.

Applications to atomic nuclei, molecules,

atomic clusters,

and finite polymers are mentioned.

Experimental evidence in atomic nuclei is presented.
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In recent years, quantum phase transitions (that is
phase transitions that occur at zero temperature as a
function of a coupling constant) have become very im-
portant in connection with condensed matter systems.
The simplest example is that occurring in the Ising model
in a transverse field, where as a function of the applied
magnetic field one observes a second order phase transi-
tion at some critical value. The phase transition is ob-
served by measuring an order parameter as a function of
the control parameter. Quite often, the order parameter
cannot be directly measured, in which case a function of
the order parameter, the susceptibility or such, is mea-
sured. The concept of quantum phase transition can also
be used in mesoscopic systems, that is, systems with a
finite number of particles N, where in fact it was intro-
duced years ago [1,2]. Recently, the advance of experi-
mental techniques has opened the way for a deeper
understanding of quantum phase transitions in a variety
of mesoscopic systems, atomic nuclei, molecules, atomic
clusters, and finite polymers. The transitions in these
systems are between different shapes or geometric
configurations and can thus be also termed “‘shape tran-
sitions.” It is of great interest to understand the modifi-
cations (if any) brought in by the finiteness of these
systems. It is the purpose of this Letter to address this
question, show results, and suggest experiments. Al-
though we treat explicitly the case of atomic nuclei,
described by the interacting boson model [3], similar
results can be obtained for other cases, such as molecules,
described by the vibron model [4], and polymers, de-
scribed by the algebraic anharmonic model [5].

There are two ways of addressing quantum phase tran-
sitions: (i) the potential approach, due to Landau, and
(i1) the direct quantum computation of order parameters.
As a generic example of the situations encountered within
the framework of boson models, we consider the
“Landau” potential,

V(B) =B +{2-p) -l B=0. (D)

This potential depends on two control parameters, & = 0
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and 7 = 0, and encompasses all situations encountered so
far within the framework of algebraic models. When
n = 0, the potential reduces to a quartic function, exten-
sively studied by Landau [6]. As a function of &, the
system has a second order phase transition at £ = £, =
%. We concentrate rather on first order transitions, since
these have not been much investigated. For a fixed value
of  # 0, the system experiences a first order transition as

a functlon of £, as one can see by evaluating V., d‘;g
and 8;‘" and observing that 2 'g is discontinuous. One can

also evaluate the three important points of a first order
transition, the so-called spinodal point &%, that is the
value of ¢ at which the second minimum appears, the
critical point at which the two minima are equivalent £¢,
and the antispinodal point £** at which the first minimum
disappears. The spinodal and antispinodal points can be
easily obtained analytically: &* = 128+9 > and &% = 1
The expression for the critical point is complex but one
can obtain a good estimate, £¢ =~ 128128 5 -

In Fig. 1 (top), we give a plot of the potentials, and in
Fig. 1 (bottom) the classical order parameter, B.quiip =
B., as a function of the control parameter ¢ for n = 1.
For ¢ = &7, the upper branch of the order parameter is
given by

3 19 1
Be:§’7+§ En2+8<l—ﬁ>. 2)
One can define a critical or “spinodal” exponent by ex-
panding around the spinodal point £* as [B, — B,(£")] «
(& —&m.

As mentioned above, at n = 0, the transition becomes
second order, the spinodal, critical, and antispinodal
points all converge to the same point, and one obtains
the usual expression for 8, = /2[1 — (1/4£)], with criti-
cal exponent u = % The classical Landau analysis pro-
vides an understanding of the class of problems discussed
above. In order to study the effects of the finiteness of the
system, we must resort to specific models. We consider
here the class of quantum models described by the
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FIG. 1. Top: Landau potential for different values of the
control parameter. The inset shows, on an expanded scale, the
two shallow coexisting minima for a narrow range of values
near the critical point. Bottom: Behavior of the order parame-
ter B, (values of the location of the minima of the Landau
potential) as a function of the control parameter ¢.

Hamiltonian H =Y ,e,G, + > ,5VapGoGp, Where
G, € G are elements of a Lie algebra. As an example,
we consider the interacting boson model of nuclei,
G=U(6) [3]. The ingredients in this model are bosons
with angular momentum J = 0 and 2 (s and d bosons)
which represent Cooper-like pairs composed of two nu-
cleons, either two protons or two neutrons. Only active
pairs, i.e., pairs in the valence shell, are considered. Their
number (typically 5-20) is denoted by N. The classical
limit of this model is of the type discussed above.
Specifically, we consider the Hamiltonian [7]

H = 60[(1 — &ng — %Q* : QX} &)

where n, = (dt -d) and Q¥ = (d' X5+ st X d)® +
x(dt X d)® with0= y = —+/7/2and 0 = ¢ = 1. The
eigenvalues and eigenvectors of this Hamiltonian are
controlled by two parameters (apart from a scale €;), &
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and y. Its classical limit (Landau potential) can be ob-
tained by the method of coherent states [1,8] in terms of
two classical coordinates, 8 and . The scaled potential
energy surface, E(B, v)/ €N, is given by [9]

2

B P £
IT,BZ[(I £) (X2+1)4N}

__ 58 EN-1
AN(1 + B%)  4N(1 + B2)?

<[ - e 2ew] @

V(B y) =

This potential is either y independent (y = 0) or has a
minimum at y = 0°. We henceforth set y = 0° and study
only the 8 dependence. This is of the type given in Eq. (1).
The quantum phase transitions of this model were exten-
sively studied years ago and are summarized in the phase
diagram of Fig. 2 [1,2]. There is a region of first order
transitions ending in a point of second order transition.
We note that an extended phase diagram has been re-
cently introduced to include both prolate and oblate de-
formations [10]. This extended diagram has Z, symmetry,
X — —x- All quantities are either symmetric or antisym-
metric under Z,. A Landau analysis of second order
transitions in the extended diagram has also been done
[11]. Because of the Z, symmetry, we confine our dis-
cussion in this article to prolate deformations (y = 0).
For oblate deformations, simply replace y by — y.

One of the consequences of the finiteness of the system
is that the potential contains energy denominators (1 +
B?) and (1 + B%)2. In other words, V() is finite as 8 —
oo, contrary to the Landau potentials where V — oo as
B — oo, A detailed analysis of the phase transition re-
veals that nothing changes in the structure of the tran-
sitions by this ‘““finiteness,” except that the minima are
slightly shifted.

We come now to the effects due to finite boson number
N and introduce quantum order parameters. For second
order transitions, it is easy to define an order parameter.

SO(6)

Second Order
Transition

N

Deformed
Phase

Spherical
Phase

U(s) SU@3)

First Order
Transition

FIG. 2. Phase diagram of nuclei in the interacting boson
model.
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Here we use the normalized expectation value of the
number of d bosons in the ground state, v, =
(0,1n,410,)/N. The behavior of v, as a function of the
control parameter &, for the second order transition U(5)—
SO(6), is shown in Fig. 3, obtained by numerical diago-
nalization of the quantum Hamiltonian (3) with y = 0.
The classical limit (mean field) result is shown as N —
oo, Even for moderate values of NN, there is at the critical
point a sudden increase in the order parameter. (A crite-
rion for recognizing critical behavior is Av; /v, = 1 over
an interval A¢ that is experimentally measurable [12].)
The discontinuity in the slope is smoothed out but its
effects are still visible. We can even estimate, from nu-
merical simulation for various N, as shown in Fig. 3
(inset), the critical exponent w defined above for the
classical order parameter 8, = /v;/(1 — v;). We find
pm = 0.53 = 0.03 (mean field result u = 0.5). We con-
clude that the concept of a second order quantum phase
transition (and its associated critical value and critical
exponent) persists even at moderate values of N = 10. An
even more interesting situation occurs for a first order
transition. For this transition we introduce an additional
order parameter, the difference between the expectation
value of n, in the first excited 0" state and the ground
state, v, = [(0,11n4]0,) — (0;|n4]0,)]/N. In Fig. 4, we plot
the two order parameters, v; and v,, characterizing the
first order transition, obtained from a numerical diago-
nalization of H in Eq. (3) for the U(5)-SU(3) transition,
X = -7 /2, as a function of the control parameter £.
Again, one can see that the features of first order tran-
sitions persists even for moderate N =~ 10. We extract, in
the inset of Fig. 4 (top), the critical exponent at the
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FIG. 3. Behavior of the order parameter »; as a function of
the control parameter ¢ for second order phase transition in
finite systems. The inset shows the ‘“‘critical”” exponent describ-
ing the behavior of the order parameter 8, in the critical point
region.
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spinodal point of the first order transition to be u =
0.52 £ 0.07 (mean field result u = 0.5).

An important question is how to distinguish from
model calculations for finite N (or from experiment)
whether the phase transition is first or second order. The
behavior of the order parameter v, is the same for both
transitions as the sudden increase is smoothed out by the
finiteness of N. However, the behavior of the order pa-
rameter v, can distinguish between first and second order,
as can be seen in the inset of Fig. 4 (bottom). For first
order transitions, v, has a wiggling behavior changing
sign in the region of the critical point due to the switching
of the two coexisting phases. For second order transition,
v, has a smoother behavior.

In the final part of this article, we address the question
of how to detect quantum phase transitions in mesoscopic
systems. In the Ising model, this can be simply done by
measuring a function of the order parameter, the suscep-
tibility (a property of the ground state), as a function of
the applied magnetic field. Mesoscopic systems have the
disadvantage that the discontinuity is smoothed out (how-
ever, as shown in the paragraphs above, this effect does
not appear to be dominant). They have conversely the
great advantage that properties of both the ground state
and of excited states can often be measured. In addition,
mesoscopic systems described by Hamiltonians of the
type of Eq. (3), that is, where the phase transition arises
from a competition between one-body and two-body
terms, have the advantage that the control parameter
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FIG. 4. Top: Behavior of the order parameter »; as a function
of the control parameter ¢ for first order phase transition in
finite systems. The inset shows the critical exponent describing
the behavior of the order parameter B, in the critical point
region. Bottom: Behavior of the order parameter v, as a
function of the control parameter ¢ for first order phase
transition in finite systems. The inset shows a comparison
between the first [U(5)-SU(3)] and second order [U(5)—
SO(6)] phase transitions.
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FIG. 5. Top: B(E2;0; — 2,) values (proportional to »;) in Sm
and Gd isotopes plotted versus neutron number (proportional to
the control parameter &). Bottom: Isomer shifts 8(r?) =
(r*),, = (r*), in Sm and Gd isotopes [13] plotted versus
neutron number. The inset shows a comparison between first
and second order phase transitions for ).

depends on the number of particles N. One can thus
measure properties of the system as a function of N. In
atomic nuclei, the order parameters v; and », are directly
related to the expectation value of the scalar operator
r* [3]: vy + o = o)y, and vy = 6[(r*)y, — (), ],
called the isomer shift, where ¢; and c, are parameters.
These quantities are not easy to measure. A simpler
quantity, proportional to {(n,) in the ground state, and
thus to v, is the intensity of electromagnetic radiation
between the ground state, with J = 0, and the first excited
state with J = 2, B(E2;0, — 2,). Figure 5 (top) shows the
B(E2;0, — 2,) values for Sm-Gd isotopes, a known tran-
sitional region between spherical and axially deformed
nuclei, U(5)-SU(3). The occurrence of a phase transition
at neutron number 90 is evident. A similar situation
occurs for »,. The isomer shift (r*)y, — (r*), is not easily
measurable. Rather one can measure the isomer shift
8(r?) = (r*);, — (r*)o, between the first 2" state and the
ground state. This is proportional to v5 = [(2|n4]2,) —
(0,11n410,)]/N. The available data [13] on this isomer shift
in Sm-Gd nuclei are shown in Fig. 5 (bottom). In addition
to those mentioned above, other measurements can be
used to distinguish first from second order transitions,
in particular, two-nucleon separation energies, S,,(N) =
E(N + 1) — E(N), where E(N) is the ground state energy
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of a nucleus with N bosons [3]. The phase transitional
behavior of different quantities across the U(5)-SU(3)
transition was also recently studied by Pan et al [14].

In conclusion, mesoscopic systems that can be mea-
sured for various numbers of particles, offer a unique
opportunity to study quantum phase transitions. The fea-
tures of these transitions persist even to moderate values
of N. An analysis a la Landau of first order transitions has
been done and a critical exponent at the spinodal point of
a first order transition has been defined. Systems where
this study can be carried out and where all the tools are
already in place are (i) shape phase transitions in atomic
nuclei in terms of the interacting boson model [3], for
example, the Sm-Gd-Dy nuclei; (ii) shape phase transi-
tions in molecules in terms of the vibron model [4], for
example, the hydride molecules XYZ-H and XYZ-D;
(iii) conformation phase transitions in finite polymers
in terms of the algebraic anharmonic model [5], for
example, the paraffins CH; — (CH,), — CHs; and
(iv) shape phase transitions in atomic clusters [15], for
example, the alkaline clusters (Na),, (K),, (where, how-
ever, the formalism needs further development).
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