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We consider a dynamical approach to the cosmological constant. There is a scalar field with a
potential whose minimum occurs at a generic, but negative, value for the vacuum energy, and it has a
nonstandard kinetic term whose coefficient diverges at zero curvature as well as the standard kinetic
term. Because of the divergent coefficient of the kinetic term, the lowest energy state is never achieved.
Instead, the cosmological constant automatically stalls at or near zero. The merit of this model is that it
is stable under radiative corrections and leads to stable dynamics, despite the singular kinetic term. The
model is not complete, however, in that some reheating is required. Nonetheless, our approach can at the
very least reduce fine-tuning by 60 orders of magnitude or provide a new mechanism for sampling
possible cosmological constants and implementing the anthropic principle.
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The cosmological constant remains the biggest puzzle
plaguing particle physics [1,2]. There is no known mecha-
nism that guarantees zero or nearly zero energy in a stable
or metastable minimum energy configuration. Recently,
the problem of the existence of small vacuum energy,
whose value has to be about the same size as the energy
in matter today, has further complicated the issue [3-5].
The apparent impossibility of addressing these problems
has led to an increase in speculation for the necessity of
the anthropic principle [6]. Before resorting to this, it is
worthwhile to ask whether anything could possibly do
what the cosmological constant data require [2]. It seems
likely that the correct way to interpret the tiny value of
the cosmological constant is that conventional quantum
field theory is not the whole story, so it is worth seeking
acceptable modifications.

One might be tempted to consider nonstandard poten-
tials. However, those are never stable under radiative
corrections. In this Letter we consider a new approach
to the cosmological constant problem, in which we try to
avoid a fine-tuned potential or one that would be unstable
against radiative corrections. We propose that the appar-
ent value of the cosmological constant is determined by
dynamical considerations. The true value of the vacuum
energy is not zero. Yet the dynamics is such that the true
minimum is never attained, and the universe would settle
down to a near zero energy state.

In this approach to the cosmological constant, we
assume that inflation has already occurred but had
ended when the vacuum energy was still large and posi-
tive. We propose scalar dynamics that decrease the cos-
mological vacuum energy in such a way that the scalar
field stalls when the curvature becomes close to zero. The
effective cosmological constant is therefore zero or
slightly positive.

We can think of two reasons this might happen. One
possibility is that there is a scaling solution to scalar
dynamics in which the kinetic and potential energies of
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a scalar field decrease in tandem, so that the field is
slowed down when small vacuum energy is achieved. In
our specific realizations, there was always an instability
invalidating the models we tried. The second possibility is
that there is a feedback mechanism in which the equa-
tions for the scalar field depend on curvature in such a
way that the field stalls at or near zero vacuum energy.
This is the possibility that will be considered here.

Clearly, ordinary scalar field dynamics does not act the
way we postulate. We assume the coefficient of a kinetic
term diverges at zero curvature, so that the field gets
frozen when the curvature approaches zero. Without
such a singular term, the scalar field would overshoot
and the energy would become negative. The singular
kinetic term makes the scalar field stop at zero curvature,
even without a fine-tuned potential.

The stability under radiative corrections is an impor-
tant feature of our model. Radiative corrections will
produce additional regular terms in the action, but the
field will stall whether or not these are present.

One might also worry about additional singular poten-
tial terms being generated through radiative corrections,
but this does not happen. This can be seen explicitly using
the Lagrangian below in Feynman diagrams or by a
change of variables for which the kinetic term will be
nonsingular, analogous to the Mukhanov choice of vari-
able [7] in standard field theory cosmology.

The unconventional Lagrangian we consider is

R
I == fd4x\/__g|:2—’<2 + a/R2 + Lkin - V((ﬁ)},
Kk 4K
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where f is a function of the Ricci scalar R, which vanishes
at R = 0 and behaves near R = 0 as

(D
Ly, =

f(R) ~ (*R?)", 2
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where « is the Planck length, « and ¢ are constants, and

= —k*9*¢d,¢p. We do not give a reason why f(R)
vanishes at R = 0. However, we shall show below that this
choice of f(R) is radiatively stable, leads to a stable
dynamics, and could help solve the cosmological constant
problem. Our sign convention for the metric is (— + ++).
We could make f dependent of ¢, but such a dependence
can be removed from the behavior of L;;, near R = 0 by
redefinition of ¢ without loss of generality. Note that L,;,
above represents the term which is the most singular
looking at R = 0 among many possible terms in the
kinetic part and that we did not include less singular-
looking terms since they are not important at low energy.
We also omitted all other dynamical fields since, as we
shall see below, the dynamics of ¢ is so slow that any
dynamical fields other than ¢ will settle into their ground
state before the universe approaches a sufficiently low
energy state.

The goal is for the scalar field to stop rolling at or near
zero vacuum energy without any fine-tuning of its poten-
tial. For this purpose, the minimum of the potential V(¢)
should be negative so that V(¢) has a root. We can absorb
any nonzero cosmological term into V(¢) without loss of
generality as far as the minimum remains negative. We
would like to stress again that all dynamical fields other
than ¢ already settled into their ground state before the
universe approaches a low energy state and that V(¢)
includes the ground state energies of all such fields.

Notice there is no tuning in the potential. Any potential
will work, so long as it has a minimum at negative energy.
However, we do require a special form for the kinetic
term. If all coefficients in the kinetic part are regular at
zero curvature, then it is evident that ¢ never stops there.
Hence, we are forced to consider a singular kinetic term
in which f(R) vanishes at R = 0. The only alternative
would be to have f depend on ¢ so that f vanishes at the
root of V(¢). However, this would not be stable under the
addition of an extra vacuum energy to V(¢). Namely, ¢
does not know where to stop, whereas the curvature does.

We do not know a parent theory that will provide our
Lagrangian as the low-energy effective theory. We treat
this model as a purely phenomenological suggestion that
might motivate further research into the possible parent
theory, which is presumably not based entirely on conven-
tional four-dimensional field theory.

We now show that this Lagrangian gives a feedback
mechanism that makes the field stall at zero vacuum
energy. We restrict this discussion to g = 1. It is easy to
see how the mechanism works for more general q.

In the flat Friedmann-Robertson-Walker background

ds*> = —df* + a(t)*(dx* + dy* + dz?), 3)
the equation of motion for a homogeneous ¢ is

i+ 3Hm+ V/(p) =0, = ¢/f, 4)
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where H = a/a, a dot denotes the time derivative, and 7
is the momentum conjugate to ¢. As we shall see soon, ¢
evolves very slowly, and thus V can be approximated by a
linear function near V = 0 as

V=ck (¢ — o) o)

where ¢ (= O(1)) and ¢ are constants. Without any fine-
tuning, the dimensionless constant ¢ should be of order
unity. Hence, the asymptotic behavior of 7 is

K2~ —ck 'H™L (6)

This follows when H/H? =~ const <0 because the mo-
mentum 77 under the influence of a constant force (V' =
—ck3) is asymptotically proportional to time and thus
to H~'. When H/H? = 0, the above asymptotic form for
7 is a consequence of the friction force —3Hm, which
cancels the constant force when 3H7 + ck > = 0. We
shall soon see that H/H? =~ 0 at low energy. If the kinetic
term is small compared to the potential term, then the
Friedmann equation implies that

3H? = K%V, (7
and (6) can be rewritten as
K, (K*V) ~ ck*mf ~ —c2(kH)* 1 ~ —2(k*V)2m=1/2,

Hence, we obtain

(K4V)—2m+3/2 ~ 2 I~ 1

, ®)
where £ is a constant. If —2m + 3/2 < 0, then we achieve

(t/k — o). ©))

This means that ¢ stalls at V = 0, where V includes all
contributions to the cosmological constant. Notice that
the result (9) is independent of the values of ¢ and ¢,. We
also see that for a large m (—2m + 3/2 < —1/2) V ap-
proaches zero more slowly than #~2 so that H/H? =~ 0 at
low energy, which was used above. We shall see later in
this Letter that stability requires (for ¢ = 1)

m>3/2. (10)

KV — +0

With this condition, it is also easy to see that V does not
jump to a negative value by quantum fluctuation [8].

We have assumed that the kinetic energy is small
compared to the potential energy. This assumption is
easily justified. At low energy (kH < 1), if m > 1, then

f
Lkin = _772 -~

2 2
2 K

(kH)? < iz ~V. 11
K

We have achieved the vanishing cosmological constant
in a way that is stable under radiative corrections and that
has self-consistent, stable dynamics. However, although
the cosmological constant approaches zero, it does so
more slowly than matter or radiation so that without
additional structure, the universe would be empty. It is
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not entirely clear that a dynamical model where this is not
the case could be successful, since it is this property that
makes it possible for all fields other than ¢ to settle into
their ground state before ¢ stalls at zero curvature so that
the zero curvature really corresponds to the vanishing
cosmological constant. Moreover, the large m and thus
the slow evolution of ¢ are required for stability. This
does imply, however, that should this mechanism be re-
sponsible for a low cosmological constant, reheating
would be required to thermally populate the universe
after the cosmological constant has decreased to a small
value. A couple of possibilities for the reheat process are
as follows.

(1) Low-energy inflation. One can consider an extra
scalar field y with mass m, ~ 1073 eV and a term such
as —Rxy*. When R ~ m?, a phase transition would occur
(as in hybrid inflation [9]) and the universe would be
reheated up to temperature ~TeV. This phase transition
happens when the energy stored in y plus the energy
stored in ¢ yields a Hubble constant of approximately
m,. The energy in y will decrease during the phase
transition; the energy after the phase transition must be
very small. In this case the cosmological constant
problem is reduced from (Mp/1073eV)* ~10'° to
(TeV/1073 eV)* ~ 10%. For smaller m,, the reheat tem-
perature would be lower and the tuning of the cosmologi-
cal constant would presumably be smaller.

(i1) Energy inflow from extra dimensions. For example,
in a nonelastic scattering of branes, a part of the kinetic
energy due to the relative motion can be converted to
radiation on our brane without changing the brane tension
and the cosmological constant. For this to work, branes
should be sufficiently flat and parallel.

Although both these reheating mechanisms require
some form of fine-tuning, one merit of the mechanism
we have proposed is that after reheating, conventional
cosmology with a vanishingly small cosmological con-
stant would be restored. This is because the coefficient of
the kinetic term is so large at low energy that the scalar
field ¢ remains frozen after reheating. Namely,

12 pl ~ (kH)*™ X |k ar] 12)

can be made arbitrarily small at low energy (kH < 1) by
considering a sufficiently large m, since 7 always follows
a regular equation of motion and thus evolves continu-
ously. The stability condition (10) also requires a large m.
Since ¢ rolls so slowly, our model, in general, predicts
Wy = py/py = —1 today.

Any symmetry restoration or phase transitions that
occurs after reheating would not pose a problem when
m is sufficiently large to freeze ¢. The reason is that the
cosmological constant just before reheating is the value at
zero temperature. The large m ensures that Ayq,, is still
positive and small since ¢ continues to be almost frozen
all the way down to the present epoch, including the time
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when the symmetry is restored and during the time the
phase transition takes place.

If all else fails, although not our initial subjective, the
existence of ¢ can at the very least provide a natural
framework in which to implement the anthropic principle.
If we assume eternal inflation, there would be many infla-
tionary universe. In each universe, the cosmological con-
stant is determined by how much ¢ has rolled when
inflation ends. That in turn depends on the number of
e-foldings that occurred before inflation stopped. In an
eternal inflation scenario, different numbers of e-foldings
would occur in different domains and therefore different
¢ values, and hence different values of the cosmological
constant would occur in different regions.

One of the very interesting features of our model is
that, despite the singular-looking kinetic term, the scalar
dynamics is stable for a broad range of parameters. Those
parameter choices are (i) ¢ > 1/2, (i) a >0, and
(iii) 2(m — 1) > g/ (2g — 1). In the m — oo limit, the choice
(2) may be replaced by f(R) ~ exp(—« *R™?) or similar
functions. We would like to stress again that this condition
is imposed only on the most singular-looking term among
many possible terms in the kinetic part, and thus adding
any kinetic terms which are less singular looking at
R = 0 does not change anything. Of course, adding a
more singular-looking kinetic term just makes the con-
dition more robust. The more singular a kinetic term
looks, the more stable it is under radiative corrections.

Since f is in the denominator and vanishes in the
x2R — 0 limit, the kinetic term threatens to be singular
at low energy. Surprisingly, we shall see below that the
singular-looking kinetic term with the large m makes ¢
evolve slowly, that the numerator K¢ vanishes more
quickly than the denominator, and that the kinetic term
is actually regular. The more singular a kinetic term
looks, the more regular and stable the dynamics is.

Now let us briefly explain the reasons for the stability
conditions (i)—(iii). (i) For the stability of inhomogeneous
perturbations, it is necessary that the sound velocity
squared ¢ = Ly, /(2K Lyin kx + Lyinx) s positive [10].
In our model this condition is reduced to ¢ > 1/2. (ii) The
R dependence of the kinetic term Ly;, produces higher-
derivative corrections to an Einstein equation, which
might destabilize gravity. As we shall explain below,
the term aR? can stabilize gravity at low energy if « is
positive. (iii) For the term aR? to control the stability, we
need to make sure that the term aR? is dominant over Ly;,
at low energy. As shown below, this is the case if and only
if condition (iii) is satisfied.

We can also show the essential, and somewhat surpris-
ing, result that the standard Friedmann equation is re-
covered at low energy, starting from the action (1). There
are higher-derivative corrections to the Einstein equation
due to the R dependence of L,;, and aR>.

Since there are higher-derivative terms, the stability of
the system is a nontrivial question. In order to see the
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nontriviality, let us consider the Klein-Gordon equa-
tion (O — M?)p =0 as a standard equation and add
e(¢)[?¢p/M? to the right-hand side. One might expect
that the standard equation should be recovered whenever
€ — 0. Actually, this is not true. The standard equation is
certainly recovered in the € — 0 limit if € > 0. On the
other hand, if € <0, then the system has a tachyonic
degree and is unstable. Moreover, if ¢ crosses a root of
€, then the system experiences a singularity ((1>¢ di-
verges), and the low-energy effective theory cannot be
trusted unless a miracle cancellation occurs.

In our system, specializing to the ¢ = 1 case again,
from the estimate of L,;, in (11) with (10), L,;, is much
smaller than aR?> (~H*) at low energy if @ # 0. Hence,
aR? dominates the higher-derivative corrections and con-
trols the stability. For the theory R/2k*> + aR?, the pa-
rameter « plays the role of € above (including the sign,)
and it is known that the low-energy dynamics is stable if
and only if @ = 0 [11]. Here, stability means that as the
universe expands, the system keeps away from unphysical
spurious solutions and approaches the standard low-
energy evolution asymptotically. If we did not include
the term aR?, then L,;, would make the quantity corre-
sponding to € above to be negative, essentially because
f(R) is in the denominator. Therefore our system is stable
and the standard Friedmann equation is recovered at low
energy if and only if @ > 0 and (10) (condition (iii) above
for a general ¢ > 1/2) are satisfied.

A possible source of instability that would disturb
weak gravity in a Minkowski background could be an
inhomogeneous fluctuation of ¢, which could possibly
generate a violent breakdown of linearized Einstein
gravity. Quite surprisingly, this is not the case and the
seemingly most dangerous part, the kinetic term, is not
as dangerous as it looks. Essential to this conclusion is
the constraint equation, which prevents ¢ from fluctuat-
ing freely and forces the denominator and the numerator
to fluctuate in a strongly correlated way so that the con-
tributions of the kinetic term to the equation of motion
are regular and much smaller than those of the «R? term
[8]. Since contributions of the singular-looking kinetic
term are small enough, the only possibly important cor-
rection to Einstein gravity is again due to the aR? term.
This tells us that the linearized gravity in our model
should be identical to that in the theory R/2x* + aR>.
Hence, we should be able to recover the linearized
Einstein gravity in Minkowski background at distances
longer than the length scale [, = \/ak and at energies
lower than I;! [12].

Before ending this Letter, it is perhaps worthwhile
stressing again that the way we have achieved the vanish-
ing cosmological constant is stable under radiative cor-
rections. Note that our essential assumption is that at least

211302-4

one coefficient in the kinetic part diverges at zero curva-
ture. Although we did not give a reason why the diver-
gence occurs at zero curvature, we showed that this
assumption is stable under radiative corrections and leads
to interesting dynamics. Adding extra terms to the action,
irrespective of whether they are in the kinetic part or in
the potential part, never spoils this assumption, and thus
the mechanism is stable under radiative corrections. The
more singular a kinetic term looks, the more stable it is
under radiative corrections.

Even more surprisingly, the seemingly most dangerous
kinetic term does not lead to unstable dynamics. In fact,
the more singular a kinetic term appears, the more regular
and stable the dynamics is. In particular, we have shown
not only that the cosmological constant vanishes but also
that the standard Friedmann equation and the linearized
Einstein gravity are recovered at low energy. This point is
in itself of interest, since it means there are new types of
dynamics that can lead to the same type of weak gravity
on a Minkowski background that we see today.

The feedback mechanism we have proposed can be
considered as a way to protect a zero or small cosmologi-
cal constant against radiative corrections. Hence, despite
the necessity for late reheating and our lack of knowledge
about a parent theory, this may be the right starting point
for thinking about the cosmological constant.
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