
P H Y S I C A L R E V I E W L E T T E R S week ending
28 MAY 2004VOLUME 92, NUMBER 21
Numerical Simulation of Orbiting Black Holes
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We present numerical simulations of binary black hole systems which for the first time last for about
one orbital period for close but still separate black holes as indicated by the absence of a common
apparent horizon. An important part of the method is the construction of comoving coordinates, in
which both the angular and the radial motion are minimized through a dynamically adjusted shift
condition. We use fixed mesh refinement for computational efficiency.
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affect its quality, we first describe each one of them in
sufficient detail to establish our basic framework.We then
discuss the major new aspect of our method, how we

condition:

@t� � �2�K m; (1)
One of the fundamental problems of general relativity
is the two body problem of black holes in a binary orbit.
Since in general relativity two orbiting bodies emit gravi-
tational waves that carry away energy and momentum
from the system, the two black holes spiral inward and
eventually merge. Gravitational waves from black hole
mergers are expected to be among the primary sources for
gravitational wave astronomy [1,2].

The last few orbits of a black hole binary fall into the
strongly dynamic and nonlinear regime of general rela-
tivity, and we therefore turn to numerical simulations to
solve the full Einstein equations. Numerical relativity has
seen many advances in recent years, but so far it has not
been possible to simulate even a single binary black hole
orbit. The first 3D simulation of a Schwarzschild black
hole was performed in 1995 [3]. In [4], the first 3D simu-
lation of spinning and moving black holes in a ‘‘grazing
collision’’ of nearby black holes inside an innermost
stable circular orbit (ISCO) was presented; see also
[5,6]. Simulations starting near or even somewhat outside
an ISCO have been performed, e.g., in [7–10], but after
rather short evolution times numerical simulations of
black hole binaries become unstable. In typical advanced
simulations the evolution time before merger is less than
50M (where M is the total mass) [10]. An open issue is
therefore to find methods that allow longer lasting evolu-
tions of two black holes before they merge, ideally allow-
ing evolution times on the order of 1 or more orbital
periods.

In this Letter we present results for a new method to
choose comoving coordinates that makes it possible to
evolve two black holes for about one orbital period for the
first time. The black holes start out close to but well
outside the ISCO, and the apparent horizons (AHs) do
not merge before one orbital period has passed. Since
there are many different choices for the various compo-
nents of a numerical relativity simulation that crucially
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construct comoving coordinates, and discuss our numeri-
cal results.

As initial data we choose puncture data [11] for two
equal mass black holes without spin on a quasicircular
orbit based on an approximate helical Killing vector
[12,13]. Each configuration is determined by the coordi-
nate distance �0 of the punctures from the origin.
We focus on �0 � 3:0M, where M is the total ADM
(Arnowitt-Deser-Misner) mass at the punctures. For �0 �
3:0M, the ADM mass at infinity is 0:985M, the bare mass
of one puncture is 0:477M, the size of the linear momen-
tum of the individual black holes is 0:138M, the angular
velocity is 0:0550=M, and the orbital period is T �
114M. For comparison, post-Newtonian methods and
the thin-sandwich approach find the ISCO in the neigh-
borhood of T � 65M [14], which translates to about �0 �
1:9M in our method. The effective potential method
locates the ISCO near �0 � 1:1M and T � 35M [15,16].

As an evolution system we use the modified version of
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) sys-
tem that is described in detail in [17]. At the outer
boundary we impose a radiative boundary condition
[17] (we did not implement the monopole term). The
black holes are handled by introducing a time indepen-
dent excision boundary according to the ‘‘simple exci-
sion’’ method described in [18], with a generalization
from cubical to spherical excision regions. We also per-
form control runs without excision using the puncture
evolution method [4,17], which typically do not last as
long as the excision runs, but which allow us to check the
excision method.

As coordinate conditions we use the dynamic gauge
conditions that proved to be successful for single black
hole runs with and without excision [17–19] and for head-
on collisions [17]. For the lapse we choose ‘‘1� log’’
slicing without explicit shift dependence, and for the
shift we use a particular version of the ‘‘Gamma driver’’
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p �nBi; @tBi � @t~��
i � �Bi; (2)

where � is the lapse, i is the shift, Bi is its first deriva-
tive, K is the trace of the extrinsic curvature, ~��i is the
contracted conformal Christoffel symbol of BSSN, and
 is the time independent conformal factor of Brill-
Lindquist data. After some experimentation we settled
for our binary runs on m � 4, which helps mimic the
singularity avoidance of maximal slicing for puncture
runs, and for the shift we set n � 2, p � 1, and
� � 2=M.

One important point to be made about the gauge con-
ditions (1) and (2) is that although they work well for
black holes without linear momentum, they do not im-
pose corotating or comoving coordinates. Moving the
black hole excision region is showing a lot of promise
[20], but here we attempt to minimize the dynamics
around black holes at fixed coordinate positions by mod-
ifying the shift condition. Corotating frames for numeri-
cal relativity are used, for example, in [21] and with
dynamic adjustments in [10,22]. The method that we
have developed as a first step toward long term comoving
coordinates is an extension of the methods and ideas of
[10,22] to orbiting configurations.

In order to obtain approximately comoving coordinates
we introduce the shift vector

icom �  �q�A1!��y; x; 0�
i � A2 _rr��x;�y; 0�

i�; (3)

where x, y, and z denote Cartesian coordinates, with � �
�x2 � y2�1=2 and r � ��2 � z2�1=2. The first term inside
the brackets is a rotation about the z axis with angular
velocity A1!, while the second term is an inward radial
motion with radial velocity A2 _rr�. The factor  �q is used
to attenuate the shift to zero at each puncture, which is
needed for simulations without excision. Clearly, for two
point particles on an inspiraling orbit this shift can
cancel the dynamics of the point particles completely.
For two orbiting black holes we can compensate only
some aspects of the global motion, similar to balancing
the bulk motion of two stars, with some dynamics re-
maining in the metric.

For the runs reported below we have set q � 3, because
this results in the natural falloff of the shift near punc-
tures [17], and we use the same value with excision. The
prefactor A1 can be used to attenuate the angular shift for
large r [10], which simplifies the outer boundary and the
analysis at large r at the cost of introducing additional
differential rotation, but for now we work with A1 � 1.
Since  �3 tends to 1 for r! 1, the shift corresponds to a
rigid rotation for large r, in particular, the coordinate
motion becomes superluminal beyond a light cylinder.
For the radial shift we attenuate with A2 � �c2 �
1�s=��0�c2 � �2=�2

0�
s�, which is constructed such that

at the initial radial distance �0 to the black holes the
norm of A2�x; y; 0�i is unity, at the origin the norm is
zero, for large � the falloff is controlled by s, and the
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shape of the attenuation can be adjusted with c. We set
c � 1 and s � 2.

To evolve for one orbital time scale it was necessary to
introduce a dynamic control mechanism with time de-
pendent velocities !�t� and _rr�t� in the commotion shift
(3) (see also [22]). In order to estimate changes in these
velocities we define the vector ai�t� �

P
�xipuncture �

xi���t�=
P
��t�, where the sums run over all points on

the excision boundary in the orbital plane. The vector
ai�t� points from the center of the excision region (from
the puncture) in the direction into which the lapse profile
has moved off center. At finite time intervals �t, we use
ai�t� to compute a velocity correction

�vi � ���damp@tai�t� � kdriveai�t���t; (4)

which is designed to damp out motion in ai�t� and to
drive ai�t� back to zero as in a damped harmonic oscil-
lator. In coordinates where the punctures are located on
the y axis, �vi defines changes in !�t� and _rr�t� by �! �
�vx=�0 and � _rr � �vy. In our case, useful values for the
coefficients are kdrive � 0:2=M and �damp � 5.

The evolution of the shift proceeds as follows. We set
the initial lapse to one and initialize the shift according
to (3), for example, with ! � 0:88� and _rr � 0 for �0 �
3M, where � is the angular velocity at infinity defined by
the initial data. Note that close to the black holes a
correction to � is necessary but not unexpected. At
each time step during the evolution, we evolve the shift
with (2). First, we evolve for a time interval of 5M with-
out any commotion correction until lapse and shift have
gone through their first rapid evolution to adjust them-
selves to the presence of the black holes. After that we
compute �! and � _rr based on (4) at resolution indepen-
dent time intervals of �t � 2M, which defines a shift
vector �i according to (3). This shift vector �i is
added to i everywhere on the grid, so the shift changes
discontinuously at intervals of �t, but we leave the time
derivative Bi unchanged.

Assuming a rigidly rotating frame at large distances,
we generalize the radiative boundary condition taking
into account that the scalar wave propagation no longer
happens along the radial direction, and that tensor com-
ponents have to be rotated to the new frame. For any
tensor F (indices suppressed) the result is

@tF � LF� v
xk

r
�F� F1�;k � v

F� F1

r
; (5)

where L is the Lie derivative, v is the wave speed, and F1

is the value of F at infinity. We have experimented with
cubical and spherical outer boundaries, where the latter is
expected to have less problems with a global rotation. A
superluminal shift does not create a problem in our runs
with the outer boundary at 24M, 48M, or 96M, since we
can lower the Courant factor in the outer regions of our
fixed mesh refinement grid, which we describe below, by
switching from Berger-Oliger time stepping to uniform
time steps.
211101-2
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FIG. 1. Evolution of the AH mass for the black hole binary
with �0 � 3:0M. The evolution lasts longer than one orbital
period of 114M defined by the initial data. The squares mark a
run with seven nested levels with coarsest resolution 2M and
finest resolution h � 0:031 25M, and with the spherical outer
boundary at about 48M, which crashes around 145M. Also
plotted are results from seven control runs with the outer
boundary at 24M and 96M, with a cubical outer boundary,
and with the AH extracted on a coarser grid to check its
convergence. There is little difference in the results, except
that the runs with the boundary at 24M last somewhat longer.
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FIG. 2. The panel on the left shows convergence of the AH
mass. The number and size of the refinement levels was not
changed, but the overall resolution was rescaled by a constant
factor. There is a linear downward drift in the mass which
becomes smaller with increasing resolution. The panel on the
right displays the mass at infinity estimated on a sphere of
radius 20M assuming a Schwarzschild background, showing
fluctuations of about 20% to 40%. The lower and upper lines for
a given resolution correspond to a cubical outer boundary at
24M and 48M, respectively.

0 2 4 6 8
−0.3

−0.2

−0.1

0.0

0.1βx ,  
βy

βx

βy

−0.3

−0.2

−0.1

0.0

0.1

0.2

0 2 4 6 8
y / M

0 2 4 6 8 10

t = 0M t = 24M t = 48M

t = 72M t = 96M t = 120M

FIG. 3 (color online). Evolution of the x and y components of
the shift vector along the y axis. The punctures are located on
the y axis at y � 
3M.
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All evolutions are carried out with a new version of the
BAM (‘‘bi-functional adaptive mesh’’) code [23], which is
built around an oct-tree, cell-centered adaptive mesh
kernel that currently is functional for fixed mesh refine-
ments (FMR) without parallelization. Adaptive mesh
refinement (AMR) was made famous in numerical rela-
tivity by Choptuik’s work on critical collapse [24], and
especially in 3D it can offer enormous savings over con-
ventional unigrid codes. However, while the basic tech-
nical problem of writing AMR codes has been solved
many times, see, e.g. [25] for an overview and [26–29] for
some recent applications in numerical relativity, there
have been only a handful of examples for the full 3D
Einstein equations and the evolution of one [30–32] or
two [4] black holes. The FMR technique with the nested
boxes of [30] was essential for the feasibility of the first
3D grazing collision [4].

One aspect of the present Letter is that we demonstrate
that FMR can work successfully even for black holes in
an orbital configuration. We use nested Cartesian boxes,
where for black hole binaries with equal mass and no spin
we have to store only one quadrant of the global domain.
BAM’s Berger-Oliger FMR algorithm uses third order
polynomial interpolation in space and second order poly-
nomial interpolation in time, following essentially the
recipe of [4,30]. The main missing feature was a reason-
ably stable unigrid code, which is now available in the
form of BSSN with dynamic gauge as discussed above.
An important detail of our setup is the use of the iterative
Crank-Nicolson method for time integration. To avoid
special boundary conditions during Crank-Nicolson
iterations, BAM uses three buffer points [32].

Let us summarize our numerical results. For the black
hole binary with �0 � 3:0M introduced above, evolution
times of up to 185M are obtained and a typical run easily
exceeds the orbital period of 114M. Figure 1 shows the
AH mass for one of the black holes as a function of time.
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It is important to note that a common AH enclosing both
black holes does not form within the achieved evolution
time, while for sufficiently small values of �0 (and the
same AH finder described in [33] and implemented in
CACTUS [34]) a common AH is found in [10].

There is an almost linear drift in the AH mass of about
10% per 100M at a resolution of h � M=32 near the
excision region, which becomes smaller with increasing
resolution as shown in Fig. 2. (We have also evolved
Schwarzschild on quadrants and full grids for 1000M
and more, confirming that our FMR method is convergent
in the AH mass.) Puncture evolutions without excision
give a quantitatively very similar result; hence the simple
excision technique does not appear responsible for the
drift. Since the AH is a slice dependent quantity, the
warpage of the slice contributes to changes in the AH
mass. The proper spatial distance between the AHs along
the y axis starts at about 9M, rises to 11M, and drops to
7M at t � 140M, but since this distance depends on the
gauge and since it does not converge for the current
resolutions, this is only a preliminary result. In the future
we plan to find event horizons to resolve some of the
ambiguity. Figure 2 also shows an estimate for the mass
211101-3
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FIG. 4 (color online). Evolution of the AH of one of the black
holes in the x-y plane. The dashed line shows the AH at t�
24M in each panel. Initially, the AH moves outward quickly
while the gauge adjusts itself near the black hole. It then slowly
shrinks toward the center while being deformed slightly until
eventually it drifts out of shape before the run fails around
145M. Note that the proper area changes linearly and only on
the order of 10% during the entire run; see Fig. 1.
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at infinity. The errors are satisfactory for the present
purpose. Since the AH mass shown in Fig. 1 is not sig-
nificantly affected by the location of the outer boundary,
we conclude that the interior of the numerical domain has
been computed with good accuracy.

Figure 3 shows the evolution of the shift vector. In
particular, the corotation speed initially increases, then
decreases slowly before increasing again towards the end.
As an indication of the remaining coordinate motion near
the black holes we show the evolution of the AH in Fig. 4.
A residual drift of similar magnitude is observed also for
larger separations, which is a likely reason for the code
failure that occurs after about 150M rather independently
of separation up to �0 � 12M.

In conclusion, dynamically adjusted comoving coordi-
nates enable us to perform the first numerical simulations
of two black holes near but outside the ISCO for about one
orbital period. A good indicator for one orbit would be the
presence of two cycles of gravitational waves. First ex-
periments with wave extraction indicate that improve-
ments of the outer boundary are needed.
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