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The competition between chain entropy and bending rigidity in compact polymers can be addressed
within a lattice model introduced by Flory in 1956 [Proc. R. Soc. London A 234, 60 (1956)]. It exhibits
a transition between an entropy dominated disordered phase and an energetically favored crystalline
phase. The nature of this order-disorder transition has been debated ever since the introduction of the
model. Here we present exact results for the Flory model in two dimensions relevant for polymers on
surfaces, such as DNA adsorbed on a lipid bilayer. We predict a continuous melting transition and
compute exact values of critical exponents at the transition point.

DOI: 10.1103/PhysRevLett.92.210601

Condensed phases of polymers are ubiquitous in the
living world. Examples range from the organization of
DNA in viruses to the native state of globular proteins.
For example, DNA condensation is required in order to
fit the complete viral genome, which can be tens of
microns long, into the viral capsid typically tens of nano-
meters in diameter. As the persistence length of the DNA
(50 nm) is comparable to the linear dimension of the
viral capsid (10-100 nm), one would expect it to pack
into ordered, crystalline configurations. Indeed, cryo-
electron-microscopy studies of the T7 virus have revealed
a circular, inverse-spool arrangement of DNA in the
capsid [1]. The observed condensed state of DNA is a
result of many competing effects such as chain and sol-
vent entropy, electrostatic interactions, bending stiffness
of the polymer, and interaction with capsid proteins [2].

These observations motivate the study of the competi-
tion between chain entropy and bending energy of a
polymer chain under extreme confinement, when only
compact configurations are allowed. The resulting tran-
sition between an entropy dominated disordered state and
an energetically favored crystalline one is captured by a
simple lattice model of a compact semiflexible polymer,
first introduced by Flory almost 50 years ago in the
context of polymer melting [3]. It has also served as the
starting point for constructing simple lattice models of
protein folding [4].

In this Letter, we provide an analytic solution of the
Flory model in two dimensions using field theoretical
methods. We resolve the long-standing debate [5-10]
about the nature of the transition, where some numerical
results [7] and approximate analytic approaches [8] were
indicative of a first-order transition, while other numeri-
cal work [9,10] and theoretical arguments based on simi-
larities with the exactly solvable six-vertex model [5,9]
seemed to imply a continuous transition. We show that the
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melting transition of a single semiflexible compact poly-
mer is continuous. Furthermore, we characterize the
transition precisely by calculating the exact values of
the critical exponents that accompany it.

Semiflexible loop model. —In the Flory model a con-
figuration of a polymer chain is described by a random
walk on a square lattice (cubic, in three dimensions)
which visits every site of the lattice exactly once. The
energy associated with a configuration is Be > 0, where B
is the number of bends in the chain. At large temperatures
(kgT > €) bends proliferate for entropic reasons, thus
reducing the persistence length of the polymer. In the
low-temperature limit (kzT < €) bends are very unlikely
and the persistence length is large, of the order of the
lattice size, as seen in Fig. 1. The central question we
address here is the nature of the transition between the
disordered high-temperature phase and the ordered low-
temperature phase.

The interplay between the entropy and the energy is
encoded in the partition function of the Flory model

Zp = > whln), (1)
I'r

where w = exp(—¢€/kpT) is the Boltzmann weight associ-
ated with a bend, and B(I'y) is the number of 90° bends in
the compact chain configuration I'z. For T — 0 (w — 0)
the equilibrium state is one that minimizes B, while for
T — oo (w — 1) entropy dominates and there is a large,
macroscopic number of bends in a typical chain configu-
ration; see Fig. 1. In order to investigate the transition
between the high- and the low-temperature phase we
construct a mapping of the polymer problem to a lattice
model of fluctuating loops, following Nienhuis [11].

We define the semiflexible loop model (SFL), whose
configurations I'; are all possible ways of covering the
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FIG. 1 (color online). Phase diagram of the Flory model. The
Boltzmann weight of a single bend in the chain is w. Forw = 1
the model describes a flexible compact polymer with many
bends present in a typical polymer configuration. For w <1
there is an energy penalty associated with bending and we are
dealing with a semiflexible chain. For w, = w = 1 the chain is
critical. At w = w, there is a continuous transition to an
ordered chain configuration; the order parameter is the differ-
ence between the number of vertical and horizontal links. The
polymer configurations shown in the top three panels (with
periodic boundary conditions imposed in the horizontal direc-
tion) are typical forw = 1/3, w = w, = 1/2, and w = 1. The
density plots below them are of the second height component in
the related loop model, for the same values of w, clearly
showing the transition from a rough to a flat interface.

square lattice with nonintersecting loops. The partition
function of the SFL model reads

Z, = ZnN(FL)WB(FL)’ )
T

where each of the N(I';) loops in the configuration I'y
carries a weight n > 0, and bends are weighted by w as in
the Flory model. Note that the n — 0 limit of Z; /n yields
the Flory model partition function for a single closed
compact polymer. Instead of explicitly computing Z; , the
approach we take is to construct a continuum limit of the
SFL model in the form of a field theory. Computations of
correlation functions in this field theory lead to the phase
diagram and exact scaling exponents for any », including
the polymer (n — 0) limit.

Height model. —Since loops in I'; do not intersect they
can be interpreted as contour lines of the height of an
interface. In the SFL model, the height is a three compo-
nent scalar field. To see this, we first note that bonds not
covered by loops form so-called ghost loops, if periodic
boundary conditions are imposed. Then we assign to each
real and ghost loop an orientation (clockwise or anti-
clockwise) independently and randomly. By doing so,
each bond of the square lattice is found in one of four
states, labeled A, B, C, or D, depending on whether it is
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covered by a real or a ghost loop oriented in one or the
other direction. We parametrize n = 2 cos(wre), with 0 =
e < 1/2, and assign a weight exp(*ime) [ exp(Zim/3)] to
each orientation of a real [ghost] loop. Tracing over the
two loop orientations, we recover the desired weights: n
for the real loops and 1 for the ghost loops.

The heights for the SFL model are defined at the
centers of the elementary square plaquettes of the lattice.
Height differences between neighboring plaquettes are
given by vectors A, B, C, or D. Since each vertex is
shared by four bonds, all necessarily in different states,
a single relation, A + B + C + D = 0, results from re-
quiring that the total height increment when traversing a
closed lattice path be zero. Thus, we conclude that out of
the four vectors three are linearly independent and that
the heights are three dimensional. For the remainder of
the Letter we adopt the following normalization: A =
(=1, +1,+1), B=(+1,+1,—-1), C=(—-1,—-1,-1),
and D = (+1, —1, +1). The partition function of the
SFL model can now be rewritten as a sum over height
configurations, since a height configuration uniquely
specifies an oriented loop configuration.

The continuum limit of the SFLL model is obtained by
coarse graining the height field over domains much
smaller than the system size and much bigger than a
single plaquette. This yields a continuous height function
h(x) = (h'(x), h*(x), h*(x)) defined over the plane x. For
n = 2 the height field is assumed rough [12] and the
partition function can be written as a sum (path integral)
over all height functions with weights given by exp(—F),
where

! . ' .
F=l ] XK (0N - o) + ] 2x(eg - h)p(x)

2 dar

+ yfdzx cos(2h?). 3)

The three terms in the coarse-grained free energy F each
have a precise physical interpretation. The first term ac-
counts for the entropy of covering the lattice with ori-
ented loops. Its precise form is dictated by the
symmetries of the loop model which involve translations
in the space of heights, and permutations of the height-
difference vectors [12]. The second term follows from
imposing the correct weighting of loops that close at
infinity. It involves the background charge

e0=—§(1/3+e,o,1/3—e), &)

which couples the height field to p(x), the curvature of the
x surface. The third term in F ensures correct weighting
of loops that close in the bulk. Finally, note that the
nonzero elastic constants
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Kn=506/3-e  Ky=gle—1/3)
o)

Ky = Kzz(& w)

are partially fixed by the loop ansatz which states that
loop weights do not flow under renormalization [13].

In the previously studied infinite-temperature limit
(w — 1), the elastic constant K, = @(1 — e)/(5 — 3e)
is also fixed by the loop ansatz, and the cosine term is
absent from F [12]. For w <1 the cosine potential ac-
counts for the energy penalty associated with bends. Its
scaling dimension in the w = 1 theory, xz = 7/Ky, =
(5 —3e)/(1 — e), is greater than 2 for 0 < ¢ < 1/2 (0 <
n = 2) and is therefore an irrelevant perturbation. It has
the effect of renormalizing the elastic constant K,, which
ultimately drives the transition to the crystalline phase
atw = w,.

Phase diagram and critical exponents.—The field
theory of the SFL model implies the following phase
diagram for any n = 2, including the polymer limit
n— 0. For w = 1 the interface described by the height
field is rough and the loop model is critical, i.e., it is
characterized by a power-law distribution of loop sizes.
As w is reduced, the bending stiffness of the loops in-
creases, and the height remains rough until a critical value
w = w.. At w, there is a roughening transition [14] to a
smooth interface; see Fig. 1. In the loop model this
corresponds to a phase with a vanishing density of bends.
The roughening transition is continuous in the Kosterlitz-
Thouless universality class. At the transition the cosine
term in F becomes relevant in the renormalization group
sense [14]. In other words, the scaling dimension of the
operator cos(27h?) at w = w, is 2. Computing this di-
mension using the field theory defined by F then leads to
the prediction K,,(e, w.) = 7/2. One important test of
this result comes from the n = 1 (e = 1/3) SFL model,
which maps to the exactly solvable six-vertex model. In
this case w, = 1/2 and K,, = arcsin(1/2w) have been
computed previously [15].

In the polymer limit the transition described by the
field theory takes us from a critical geometry of a dis-
ordered compact polymer, at low bending stiffness, to an
ordered state, at high bending stiffness; see Fig. 1. The
critical phase is characterized by scaling exponents » and
0. Namely, the probability distribution p(r, [), for the end-
to-end distance r of a polymer of length /, has a scaling
form p(r, 1) = rf(r/1”) [16]. Using the field theory de-
fined by Eq. (3) these exponents can be computed exactly
[12]. We find

and 0:377_16K22’

1
-, 6
2 8 ©)

v =

note that 6 varies continuously with w via the elastic
constant K,,. The calculation of v gives another impor-
tant check on the field theory since » = 1/2 follows
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TABLE I. Numerical transfer matrix results. Exact (for
w =1, w.) and numerically determined values of the elastic
constant K,, were used to compute the exponent 6y from
Eq. (6), for various values of the bend weight w; this compares
favorably with the direct numerical determination 6.

W71 K22 eth enum

1 7)1 5/56 0.088

1.2 0.584 0.004 0.004

1.4 0.736 —0.094 —0.096

1.6 0.924 —0.214 —0.22

1.8 1.210 —0.404 —0.40
wil =2 /2 ~5/8 -0.7

directly from the fact that compact polymers completely
fill the plane. Finally, exact values for K, in the w = 1
and w = w, case lead to predictions O(w = 1) = 5/56
and O(w = w,) = —5/8. These values of # have a simple
physical interpretation. Namely, in the absence of bend-
ing stiffness (w = 1) the ends of the chain repel (positive
), as is the case for open chain conformations of poly-
mers in a good solvent. Somewhat surprisingly, this en-
tropic repulsion decreases and turns to attraction
(negative #) as the chain stiffness is increased.

Numerical transfer matrix results.—The main result
of this Letter, the prediction of continuous melting of
compact polymers in two dimensions, rests on the valid-
ity of the proposed field theory of the Flory model, Eq. (3).
To further test the field theory we have made use of a
numerical transfer matrix approach [12] to compute the
elastic constant K», and the exponent #. Results are
shown in Table I. We see that Eq. (6) is satisfied to a
very good approximation and that the exact values for
the two quantities at w = 1 and w = w, are confirmed by
the numerical computations.

Experiments.—DNA absorbed on a lipid bilayer pro-
vides a laboratory for testing theories of two-dimensional
polymers. Previous experiments [17] on this system have
measured the theoretically predicted scaling exponents
derived from the two-dimensional self-avoiding walk
model. These measurements were done at low DNA con-
centrations. As the amount of DNA on the surface is
increased it was observed that single chain conformations
become more compact. To study the transition discussed
here compaction to areas of linear dimensions approach-
ing the DNA persistence length would be needed. It would
then be interesting to monitor the two ends of the DNA
using fluorescent labels, as the amount of compaction is
increased. This would provide direct information about
p(r, 1) and the exponent # computed above.
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