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Under assumptions on initial wave-packet spreads and particle interactions, different mass particles
scattering off one another will have the product o?m; converge to a common value, where o; is the
spread and m; is the mass of the ith particle. When this relation is satisfied, kinematic entanglement

vanishes.
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Theoretical developments suggest that a good way to
describe naturally occurring quantum states is as spa-
tially localized Gaussian wave packets, or as density
matrices built from them [1-4]. The principal concern
of these works (and others) is to justify the effective
diagonalization of the density matrix in a coordinate
space basis and to calculate a time scale for this process.
In particular, thinking of the density matrix as a
weighted sum of pure-state projections, wave packets do
not spread indefinitely, but in any particular environment
arrive at a statistically defined size. As far as I know,
there have not been experiments to test the sizes that
emerge. The existence of a stabilized spread size will be
the working assumption of this article. “Spread,” for our
purposes, means (Ax)? = {(x — (x))?), although the dem-
onstrations of spread limitation often address density
matrix diagonalization. Ax is well defined and in general
nonzero, even for density matrices that are diagonal in
coordinate space.

In this Letter, I report a surprising feature of wave-
packet evolution that takes place when unequal-mass
particles scatter. In particular, absent other influences, a
collection of mixed-mass particles with Gaussian wave
packets will evolve so that wave-packet spreads, o2, are
related to corresponding particle masses, m, by ma?
const. Moreover, if the wave packet was not quite
Gaussian, our calculation suggests that it will tend to
lose non-Gaussian components in collisions (another
kind of evidence for the thesis of [1-4]). Finally, it turns
out that when mo? ~ const, and the wave function is
Gaussian, there is no kinematic entanglement. By this I
refer to the fact that after a scattering the coordinates of
the colliding particles are intertwined, and even if the
collision has but a single outcome, momentum conserva-
tion alone suggests—but apparently does not require—
entanglement. These conclusions are based on dynamical
assumptions that will be elaborated below.

In [5] features of this sort were noted, but under limited
circumstances. What I have now found is that (i) the result
can be extended to three dimensions (3D), (ii) for mul-
tiple collisions mutually interacting particles evolve so
that all simultaneously satisfy the relation, (iii) the pos-
sibility of multiple outcomes (quantum induced) does not
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limit the result, and (iv) there are indications that non-
Gaussian factors tend to shrink.

I begin with a demonstration of the result in [5]. A
density matrix, p, can be represented as a weighted sum
over projections (pure states). p(¢) evolves by evolving
each pure state and recombining (a trivial consequence of
[y — Uyl e [p— UpU't]). Scattering calculations in
this Letter will be done for pure states, subsequent to
which they can be recombined. Moreover, properties
shared by all the pure states are properties of the density
matrix. The following is an example (with pure states
summed over k'):

PinEmir~ eXp{—(x* + y?)/40? + ik(x — y) = B(x = y)*}

=\/g [ ae

(k/ _ k)Z x2 + y2
“OPTTag 4e

The quantity py, gnyir Was shown [2] to be the typical form
of a density matrix after interaction with its environment.
The salient environment-induced feature is the off-
diagonal cutoff, governed by 8. In Eq. (1), I have taken
all pure-state spreads (o) to be the same.

Begin then with an initial one-dimensional (1D) two-
particle momentum-space wave function of the form
W, (p1, po) =expl—oi(py — k\)? +ipia, — 03(py —ko)*+
ip,a, ], where the indices refer to the particles, k and a are
the central momenta and positions, normalization is
ignored, and /i = 1. In fact, all but quadratic terms in
the p; are ignorable for our argument. For the (position)
spreads, o, I adopt the notation w so that the negative of
the quadratic part (in the momenta) of the logarithm of
the initial wave function is Q;(p, p;) = @, p? + w,p3.
Although other dependencies of W are important, the
spread can be read from the coefficients of the quadratic
part alone. We assume that scattering occurs on a time
scale short compared to natural wave-packet spreading as
well as environmental truncation (which in general re-
quires many scatterings). These and other assumptions
will be elaborated below. Only the real part of @ will be
considered. With hard core repulsion, in 1D there is only

+ ik’ (x — y)} (1)
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one outcome, and the propagator is best expressed in
collective coordinates. These are P = p; + p, (conjugate
to ryx; + rx,) and p = r,p; — r; p, (conjugate to x; —
x,), where r; =m;/(m; + m,). Thus, Q; = w,(r|P +
p)? + w,(r,P — p)*. Aside from phase factors, whose
possible impact on packet shape will be discussed below,
the propagator is G ~ 8(P; — P;)8(p; + p;) (see [S]).
The final shape factor is found by reversing p in Q; and
reexpressing in the original variables:

Or(p1, p2) = pilo(r; — r)* + 4riw,]
+ pilws(ry — r)* +4riw]
+4(ry — r)pipariwy — o] (2)

As noted [5], this implies that if o7 = const/m;
(&rjw; = rpw,) then the entangled portion, arising
from the coefficient of p; p,, is zero and the wave function
factors. Following the 1-2 encounter, the particles go off
to others, say a collision of No. 1 and another particle [6].
If No. 1 is not entangled with No. 2, it is clear what wave
function should be attributed to No. 1 for its next collision.
Otherwise, we take the 1-2 density matrix, trace out p,,
and either use what is left for a density matrix calculation,
or select exemplars from a projection expansion of the
density matrix, with appropriate weights. Thus, we form
p(p1, py) from  [dp;exp[—Qp(py, p2) — Qr(py, p2) +
--+]. This turns out to have a single value for its new
spread (Ax), which can be evaluated by transforming p to
coordinate space and finding the coefficient of x> (in the
exponent) on the diagonal. Details will be presented in
the 3D case. The result is that after the 1-2 collision the
particles have new spreads (independent of the original
central momenta, etc.) given by the diagonal part of Qg
alone:

&l = £1cos?20 + £&,5in?20), 3

&L = £5in?20 + &,c0s226), ®)
where &; = r;w; and cos’0 = r,. Consider a gas of two
species with many scatterings [6]. For equal mass scatter-
ing, Eq. (2) shows that there is no entanglement, only
interchange of spread. With each successive other-mass
scattering, the transformation (3) is applied. The result is
convergence to &, = &, = [5(10) + §(20)]/2, where “0” in-
dicates initial condition. (> ¢ is invariant; for N = 2,
>N, m;w; is invariant). The convergence is exponential,
with |&, — &, decreasing by |[cos40| on successive
iterations. For example, a 3-to-1 mass ratio sends that
difference to less than 1% of its original value in seven
collisions. Going from ¢ back to the spreads, this shows
o?m; to be constant. Moreover, collision no longer in-
duces kinematic entanglement [7].

Next, suppose the initial wave function is not perfectly
Gaussian. Add terms > ,_, ,g;p} to Q; and redo the above:
Write the p; in terms of P and p, switch p — —p in the
collision, and reexpress using (p, p,). If the induced
entangling does not affect the outgoing one-particle
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packet shape, as for the quadratic case, the coefficients
g; undergo the transformation

righ = rig cos*26 + r3g,sin*26,

ragh = rig;sin*20 + rig,cos*26.

“)
Except for the equal or zero mass cases, all eigenvalues of
this transformation are less than one in magnitude, in-
dicating a flow of quartic terms to 0. Similar arguments
hold for other nonquadratic terms. Nevertheless, these
results do not have the force of the previous ones because
discarding the entangled terms has not been fully justi-
fied. Heuristic arguments, lowest order in non-Gaussian
terms and using the near independence of p(p, p’) from
(p + p’) when p(x, x’) is near diagonal, justify the result,
but I do not have a complete proof.

If the interparticle potential allows transmission as
well as reflection, surmountable complications ensue, as
will be discussed in the richer 3D case.

In 3D, the propagator is a 6 function in the center-of-
mass momentum times a potentially more elaborate ob-
ject for the relative coordinate. Consider a wave packet in
the relative coordinate. If the prescattering wave function
is ¢(r, 0), then under the standard assumptions of scatter-
ing theory (see below) it ultimately becomes

U, D) = ¥ — w1, 0)e® + % Fo@) Uk — w1, 0)e®,
5)

where k is ¢’s central momentum, v = k/m, E = k*/2m,
the scattering occurs near r = 0, and f(F) is the scatter-
ing amplitude in the direction 7 ([8], Section 11.2). The
density matrix constructed from this consists of trans-
mitted plus scattered components, and assuming environ-
mental decoherence [9] we can select wave functions
from this collection so as to follow the particle’s time
evolution. The immediate message of Eq. (5) is that the
shape of the wave function does not change: You can find
the particle where it kinematically needs to be, given 7, ,
etc., but, except for resonances, the form of its wave
function is still (-, 0).

In momentum space, this leads to a simple description.
The new wave function is the same as the old, but the
relative momentum has rotated, as in classical mechanics.
For our purposes—following the shape of the two-
particle wave function—each “branch” of the wave func-
tion, i.e., the pure state moving in a single definite
direction that is extracted from the environmentally trun-
cated density matrix, can be obtained from the original
wave function using an effective propagator, G ~ 6(P; —
P;)6(ps — Rp;), where each momentum is a column three
vector and R € SO(3) (dropping boldface). The richness
in the phase of f does not enter the discussion of spreads.

The significant assumptions underlying the Low-
Merzbacher [8] representation, Eq. (5), which become
the assumptions of the present article, are that the dis-
tance between scatterings is large compared to the wave

210404-2



VOLUME 92, NUMBER 21

PHYSICAL REVIEW LETTERS

week ending
28 MAY 2004

function spread, that the spread is in turn larger than the
scatterer, and that the energy is not near resonance. (See
[10] for an example.)

With this characterization of the time evolution of a
single component of the density matrix, we follow what
happens to the spreads. For the initial wave function we
again assume a Gaussian, but the spreads, w;, are now

3 X 3 positive-definite matrices. The quadratic part of the
negative of the logarithm of the initial wave packet is
therefore Q;(p, p2) = p{ @,p; + pJ wyp,, where T in-
dicates transpose. To analyze the scattering, as above, Q;
is reexpressed in collective coordinates, and the relative
momentum is sent to its image, in this case R p. Following
this, the p; are restored and only quadratic terms retained.
Using R"' = RT and o' = w, the result is

Or = pi(r; + RnR)w(r; + 1R + (1 = R)w,(1 — R H}p,
+ p3{(ry + iR wy(ry + R~ + 2(1 = Rw,(1 — R™"}p,

+2p{(r; + R (1 = R™Y) + (1 = R)ryw,(ry + 1R )}p,.

As for 1D, the entanglement term, p|{...}p,, vanishes
when r;w; = ryw, = const, except that now the @’s must
be multiples of the identity. Under this condition, the
spread is unchanged by scattering.

We next calculate the effective spread of the scattered
particles if the entanglement term does not vanish. For
particle No. 1 trace out No. 2’s coordinates, calculating
p(py, py) from  [dp,expl—Qp(py, p2) — Qr(p}, p2) +
-+ -], as before, except that now the p’s are three vectors.
Define A, A,, and B as matrices by writing Qr(p;, p2) =
plAip + pJ Ayps + 2p| Bp,. Then the integral over p,
yields (dropping the “1”” on p,; and suppressing irrelevant
dependencies)  p(p, p') = exp(—pTA;p — p'TA;p') X
expl(p + p)TC(p + p')], with C = BTA;'B/2. To find
the new spread, it is convenient to go to coordinate space.
With x = X1, ﬁ is

plx,x') = [ dpdp P v
X o= P Aip=pTA P +(p+p)TClp+p)
= exp(—§TM™'£/4), (7)
with M = (" ¢ "€)and § = (*,). M™! can be written

(; g) with @ and B symmetric, since A; and C are
symmetric. A straightforward identity shows that
EM e =xT(a—Bx+xXT(a—B)x+(x—x)T X
B(x — x'). To find the new o (Ax) we need only the
diagonal elements in the x-space basis, yielding for the
quadratic form for the x portion of the density matrix
(e — B)/4. Returning to momentum space, the new
spread [the quadratic form for pT(...)p] is (& — B)~".
It is easily shown that this quantity is equal to the original
Aj. As a result, the new spread for No. 1, w], is A, and
w), = A,. The packet spread iteration rule is therefore

& = (ry + nR)¢(ry + r,R™")
+ (1 —R)E&E( —RTY),

& = (ry + rR)éy(ry + 1R
+ rirp(1 = R)& (1 — R,

®)

where again the w’s have been replaced by ¢; = r;w;.
Note that Eq. (8) preserves the symmetry and positivity of
the w’s. [Also, (8) reduces to (3) for R — —1.]

I will not dwell on the mathematical properties of
Eq. (8), but report only that, as for Eq. (3), it converges
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(6)

to limiting w values when the transformation is iterated,
using a variety of R’s, as in a gas where the impact
parameter takes many values [6,11,12]. Under the trans-
formation, Tr) & = const, and the final ¢ values are
Tr[rlw(lo) + rzw(zo)]/ 6 times the 3 X 3 identity. [I have
also shown that certain nonquadratic terms in log(y)
flow to zero (as for 1D) and expect this to be true in
general.] The consequence of repeated use of Eq. (8) is
therefore that the spreads for a collection of varied-mass
particles converge to isotropic values, inversely propor-
tional to their masses.

The focus of this article has been on the shape of
naturally occurring wave packets and, in particular, on
the size of the position-space spread. Can this be mea-
sured in the laboratory? The issue of measuring the wave
function goes back at least to the 1930s [13], and contin-
ues to engage researchers both in principle and in practice
[15-28]. To test our results, emphasis would be on mea-
surement of interference phenomena for massive particles
[27-29]. One would seek less information than is often
contemplated—spread alone is needed. Such a measure-
ment can be performed with a two-slit interferometer by
varying slit separation. If the separation is greater than
the transverse spread, interference could not be observed,
so the threshold for interference becomes a rough
measure of spread [30]. One point though needs to be
emphasized. While experiments have measured subtle
properties, including coherence lengths, some of those
properties are created in the state-preparation process,
which can involve beam choppers, monochromators, col-
limators, and other devices. An experimental probe of the
present work should take particles from the environment
in which they scatter off one another (a “natural” envi-
ronment) without changing the spread.

The calculation of this article is straightforward, but
the circumstances under which the assumptions apply are
less clear. In particular, a relevant and unknown quantity
is how large the environmentally “‘stabilized” spreads are
(without the scattering discussed here), a topic that has
been explored in theoretical discussions and for which
experimental work has been contemplated [25]. It is fur-
ther implicit that the spread evolution studied here occurs
rapidly compared to the environmental size stabilization
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of spreads [31]. Whether or not this is true, as for our
assumptions on the size of the stabilized spread, is un-
known. What theory can contribute is to suggest situ-
ations in which the assumptions are more likely to be
true. In selecting candidates for experiment, one should
consider cross sections, resonances, and mass ratios. The
assumptions may also hold more widely than at first
appears. Noninteracting species in a walled container
can separately come to “‘spread equilibrium” with the
wall, so that the ratios of their spreads are inverse to that
of their masses, despite a lack of direct interaction [32]. If
the container is itself buffeted by outside influences, the
three of them will come to a joint steady state (of spreads)
with the scale set by the container.

Asin [5,33], I find the nonentanglement property of the
spread equilibrium intriguing. Entanglement can occur
when more than one distinct final state is available in a
scattering, but from the perspective of [34] the phenome-
non described in the present article makes the finding of
“special” states easier.
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