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Exact Decoherence to Pointer States in Free Open Quantum Systems is Universal
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In this Letter it is shown that exact decoherence to minimal uncertainty Gaussian pointer states is
generic for free quantum particles coupled to a heat bath. More specifically, the Letter is concerned with
damped free particles linearly coupled under product initial conditions to a heat bath at arbitrary
temperature, with arbitrary coupling strength and spectral densities covering the Ohmic, sub-Ohmic,
and supra-Ohmic regime. Then it is true that there exists a time tc such that for times t > tc the state can
always be exactly represented as a mixture (convex combination) of particular minimal uncertainty
Gaussian states, regardless of and independent from the initial state. This exact ‘‘localization’’ is hence
not a feature specific to high temperature and weak damping limit, but is a generic property of damped
free particles.
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not be described other than being well understood. What
else is there to ask for?

dilation [15]. No assumptions will be made concerning
the temperature of the environment and the strength of
There is a long tradition of approaching the questions
of how and to what extent classical properties of quantum
systems emerge dynamically due to the unavoidable cou-
pling to their environment. Essentially, any quantum
system interacts to some extent with other external de-
grees of freedom, which in turn may be said to monitor
certain properties of the quantum systems [1–10]. This
yields decoherence, which results in a loss of purity of
initially pure states of a distinguished quantum system
coupled to an environment. Not all initial quantum states
in such a dilation are yet equally ‘‘fragile’’ to this inter-
action: there is a small set of initial states that is often
relatively robust with respect to this interaction. The term
pointer states has been coined for such states, owing the
name to models for quantum measurement where the
pointer basis is essentially determined by the interaction
of the apparatus with the external degrees of freedom [1].

For harmonic and free quantum systems linearly
coupled to a heat bath consisting of harmonic systems,
this general mechanism is very well understood indeed.
For example, if one prepares a single mode in a pure state
in order to let it very weakly interact with an environment
in the Gibbs state corresponding to a very high tempera-
ture, which one is the state that produces the least entropy
over one cycle of the oscillator? In retrospect it hardly
comes as a surprise that this is a coherent state, a minimal
uncertainty Gaussian state [6]. Most attention has proba-
bly been devoted to thoroughly understanding the dy-
namics of harmonic and free quantum systems in this
limit of weak coupling and high temperatures [1–3,6]. In
this limit, in particular, decoherence time scales have
been identified [1]. Also exact quantum master equations,
generators of dynamical maps, have been derived and
scrutinized in great detail [9,11–14]. After all, the dy-
namics of open harmonic or free quantum systems can-
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A question that seems to have been overlooked so far is
the following: To what extent is exact decoherence in free
quantum systems to pointer states actually generic? This
question is most appealing in case of the free damped
quantum particle [12,14], where there is no equilibrium
Gibbs state. More specifically, is it true that starting from
an arbitrary quantum state, after a fixed finite time tc
(independent of the initial state), the state of the system is
exactly indistinguishable from a mixture, a convex com-
bination, of minimal uncertainty Gaussian states for all
times t > tc? In this sense, the free quantum system may
be said to be in a situation that can operationally not be
distinguished locally from the following situation: the
particle is somewhere in a minimal uncertainty Gauss-
ian state; one simply does not know where in phase space.
That this is the case seems fairly plausible for the case of
high temperatures and weak damping. A significant first
step in this direction has indeed been achieved very
recently by Diosi and Kiefer in Ref. [7], showing that
this intuition is indeed correct for the approximate gen-
erator for the dynamical map in the limit of negligible
friction and at high temperatures. Yet is this a generic
feature of free quantum systems that are linearly coupled
to an environment in a dilation, and true not only for
specific regimes, but also for any coupling strength, any
nonzero temperature, and Ohmic, sub-Ohmic, as well as
supra-Ohmic damping? This is the question that will be
addressed (and answered) in this Letter.

A free quantum system linearly coupled to a heat bath
of oscillators will be investigated where the distinguished
system is initially in an arbitrary (and potentially very
‘‘nonclassical’’) state, whereas the environment is pre-
pared in the Gibbs state, which corresponds to an initial
product state, such that the time evolution of the state of
the free quantum system amounts to a completely positive
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the coupling; for the class of nonvanishing spectral den-
sities, any C1 function I:R� ! R� could be allowed for
with

lim
!!0

I�!�=!p � 	 > 0 (1)

for some p 2 �0; 2�. This will be referred to as Ohmic
damping when p � 1, otherwise as sub-Ohmic (for
p < 1) or as supra-Ohmic (for p > 1). This is an already
solved problem in the sense that quantum master equa-
tions are known, and hence, the argument draws heavily
from known results on generators of dynamical maps
[11,17], and from earlier results on the long-time behavior
in quantum Brownian motion [14]. The starting point is
the equation of motion of the reduced density operators as
derived in Ref. [11], in the integrated form as presented in
the recent article in Ref. [17]. Later, ideas will be used
very similar to the ones in Ref. [7].

The equation of motion of the free particle is for the
subsequent purposes most conveniently expressed in
phase space in terms of the Wigner function W:R2 �
R� ! R [18], which is for each t 2 R� the Fourier trans-
form of the characteristic function, dependent on  �
�1; 2� 2 R2, where 1 and 2 correspond to position
and momentum coordinates in phase space, respectively.
As a partial differential equation, the Hu-Paz-Zhang
equation [11] reads [19]

@tW�; t� � 	2@1W�; t� ��2�t�1@2W�; t�

� 2	�t�@2�2W�; t��� 	�t�h�t�@22W�; t�

� 	�t�f�t�@1@2W�; t�;

where the 	; f; h;�:R� ! R are time-dependent coeffi-
cients for which explicit expressions are known. The
formal solution of this partial differential equation can
be found for all system parameters [17]. The solution of
the differential equation with time-dependent coefficients
as presented in Ref. [17] is given by

W�; t� �
Z
d20

1

2�jM�t�j1=2

� e	�R�;0;t�M�t�	1R�;0;t�T �=2W�0; 0�R�; 0; t�

� �1 	 _GG�t�01 	G�t�02; 2 	 �GG�t�01 	 _GG�t�02�;

where dots represent time derivatives. Here, G:R ! R is
the Green’s function, which isG�t� � 0 for t < 0 and is for
t > 0 the solution of the integral equation

�GG�t� �
Z t

0
ds��t	 s� _GG�s� � 0;

��t� �
Z 1

0
d!

I�!�
!

cos�!t�;

with initial conditions G�0� � 0, _GG�0� � 1, in terms of
the so-called damping kernel. The 2� 2 matrix

M�t� �
�
A�t� C�t�

C�t� B�t�

�
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has coefficients that in Ref. [17] have been expressed in
terms of correlation functions. On using the function
K:R� ! R,

K�t� �
1

�

Z 1

0
d!re�~���!� i0��! coth��!� cos�!t�;

with ~�� �
R
1
0 dt��t�e

izt, the coefficients A�t�, B�t�, and
C�t� can be expressed as

A�t� �
Z t

0
ds

Z t

0
ds0G�t	 s�G�t	 s0�K�s	 s0�;

B�t� �
Z t

0
ds

Z t

0
ds0 _GG�t	 s� _GG�t	 s0�K�s	 s0�;

C�t� �
Z t

0
ds

Z t

0
ds0G�t	 s� _GG�t	 s0�K�s	 s0�;

as G�0� � 0. Equation (2), together with the subsequent
specifications, forms the starting point of our analysis.

Equation (2), using the transformation rule for multiple
integrals, can be written in the form of a product of a
time-dependent determinant and a convolution with a
Gaussian as

W�; t� �
Z
d20

1

2�jM�t�j1=2
e	��	0�M�t�	1�	0�T �=2

�
1

jV�t�j
W�V�t�	10; 0�;

V�t� �
� _GG�t� G�t�

�GG�t� _GG�t�

�
:

(2)

In general, the Green’s function G can not be evaluated in
a closed form, the case of Ohmic damping being an
exception, where the spectral density is for small frequen-
cies linear in the frequencies. The Laplace transform ĜG of
G is related to the Laplace transform �̂� of � as ĜG�z� �
�z2 � z�̂��z��	1. In order to specify the long-time behavior
of the Green’s functions, it is sufficient to know the
power law for the spectral density for small frequencies
only. Using Eq. (1), one arrives at p 2 �0; 2� at
limt!1G�t�=f�t� � 1 (see also Ref. [14]), where f�t� �
sin��p=2�tp	1=�		�p��. From the asymptotic behavior of
f as t! 1, it can be seen after a few steps that
limt!1A�t�=A

0�t� � 1, with

A0�t� �
Z t

	1
ds

Z t

1
ds0G�t	 s�G�t	 s0�K�s	 s0�:

This quantity, in turn, happens to be a quantity inves-
tigated in Ref. [14], where it has been shown that
limz!0�ÂA

0�z��z�=�2ĜG�z�� � 1, which yields
limt!1A�t�=A00�t� � 1, with

A00�t� �
2 sin��p=2�
�		�p� 1�

tp: (3)

In order to find the long-time behavior of the function C,
we may use the fact that C�t� � 2 _AA�t� for all t 2 �0;1�,
which holds since G�0� � 0, and apply l’Hospital’s rule to
arrive at limt!1C�t�=C

00�t� � 1, with
210401-2
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C00�t� �
2p sin��p=2�
�		�p� 1�

tp	1: (4)

To get the long term behavior of B, we can again start
with limt!1B�t�=B

0�t� � 1, where

B0�t� �
Z t

	1
ds

Z t

1
ds0 _GG�t	 s� _GG�t	 s0�K�s	 s0�:

This, in turn, is nothing but the momentum uncertainty in
the stationary setting, which is well defined even in this
free case (compare also Ref. [17,20]),

1

�

Z 1

0
d!im�"�!� i0��!2 coth�!�� � B1 > 0; (5)

with "�z� � 	1=�z2 � iz~���z��. B1 is a (time-
independent) positive real number. So we have deter-
mined the long-time behavior of the entries of the
symmetric 2� 2 matrix M�t�.

Subsequently, a pointer state is taken to be a minimal
uncertainty Gaussian state with particular second mo-
ments that reflect a small uncertainty in the position
canonical coordinate. The statements will be formulated
in a language common in quantum optics and continuous-
variable quantum information theory. The first moments
are �d1; d2� � �hXi; hPi�; the second moments are col-
lected in the covariance matrix

	 �

�
2hO2

1i hO1O2 �O2O1i

hO1O2 �O2O1i 2hO2
2i

�
;

where O1 � X	 hXi and O2 � P	 hPi. The second mo-
ments for the pointer states are taken to be

	1 �

�
B	1
1 0
0 B1

�
: (6)

This is a covariance matrix of a minimal uncertainty
state as j	1j � 1. Note, that in the weak damping limit,
B1 becomes approximately [21] B1 � �	1 � T (note
that �h � 1 and k � 1), so in the weak coupling and
high temperature limit, the set of pointer states is a set
of minimal uncertainty Gaussian states very narrow in
position. The corresponding pure Gaussian state with first
moments �d1; d2� � �1; 2� will be denoted as ' �
j ih j. This set of minimal uncertainty Gaussian
states, which becomes a set of states very narrow in
position in the limit of weak coupling and high tempera-
tures, will be regarded as the set of pointer states [22]. It is
an overcomplete set of states satisfying jh j 0 ij2 �
e	�	0�T �	1=2��	0�. The analogue of the standard
s-ordered Wigner function of a state ' may be defined as

Ws�� �
1

�2

Z
d20es�

02
1 �

02
2 �=

��
2

p

e	2i)0T

� tr�ei"fX;Pg�ei�1X�2P�e	i"fX;Pg�';

s 2 �	1; 1, where ) is the symplectic matrix embodying
the canonical commutation relations, f:; :g� denotes the
anticommutator, and " � 	 log�B1�=2 is the squeezing
parameter corresponding to the pointer states (taken with
respect to the standard unit quantum oscillator). The state
can then be represented as [23]
210401-3
' �
Z
d2W1��j ih j; (7)

whereas, in turn, W	1�� � h j'j i=� � 0 for all  2
R2. Then, the s-ordered functions are related to each other
via convolutions (compare, e.g., Ref. [24])

Ws�� �
Z
d20

Ws0 �
0�

2�
4

s0 	 s
e	2�	0�		1

1 �	0�T=�s0	s�;

(8)
for s < s0. We are now in the situation that we can argue
similarly to Ref. [7]: the function W0

0:R
2 � R� ! R,

W0
0�; t� � W0�V	1�t�; 0�=jV�t�j, is a legitimate Wigner

function, as can be read off the definition of the Wigner
function. Then, Eqs. (2) and (8) imply that

W1�; t� �
Z
d20

W0
0�

0; t�
2�

jM�t� 	 	1=4j	1=2

� e	�	0��M�t�		1=4�	1�	0�T=2:

However, sinceZ
d20

W0
0�

0; t�
2�

4e	2�	0�	1�	
0�T � 0

for all  2 R2, then W1�; t� � 0 for all  2 R2 if

M�t� 	 	1=4 � 	1=4: (9)

In turn, given the time dependence of the coefficients of
M�t� demonstrated in Eqs. (3)–(5), there exists a finite
tc > 0 such that (9) is valid for all t > tc. This time tc, in
turn, is the time from which W1 is strictly positive, and
the state can certainly exactly be represented as a mixture
of pointer states with second moments as in Eq. (6).

This is a generic result for arbitrary nonzero tempera-
tures, arbitrary coupling strengths, and all the spectral
densities as in Eq. (1). For specific choices for the spectral
density, bounds for the time tc can be found from which
the state can be represented as a mixture of pointer states.
For Ohmic damping, in particular, the Green’s function
is given by G�t� � �1	 e		t�=	 , i.e., �̂��z� � 	 > 0
[14,17]. The behavior becomes particularly transparent
in the high temperature case. We then simply ob-
tain limT!1A�t�=T � 2�t	G�t��=	 , limT!1C�t�=T �
2�1	 _GG�t��=	 , and limT!1B�t�=T � 1	 e	2	t. Figure 1
depicts Tc � limT!1tc, where tc is the smallest time for
which (9) is satisfied for strictly Ohmic damping.

To conclude, it has been shown that if one couples a
free particle linearly to a heat bath prepared in the Gibbs
state of some temperature, then, under very general
conditions and without approximations, the state of the
system becomes after some finite time exactly indistin-
guishable from an exact mixture of particular minimal
uncertainty Gaussian pointer states. In this sense, it can
be said that exact decoherence to these localized pointer
states is generic and not only a feature of a limit that can
be regarded as being classical. Locally, hence, we arrive
at the situation as if we had merely classical ignorance
about the position of the particle. Needless to say, care is
required in the interpretation of the result, and one should
not be tempted by a realistic interpretation in terms of
210401-3
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FIG. 1. This figure shows logTc � limT!1 logtc, where for a
given temperature the number, tc > 0 is the smallest number
such that (9) is satisfied for all t > tc for the case of strictly
Ohmic damping, as a function of log	 . The stronger the damp-
ing, the faster is the localization process.
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classical alternatives. In turn, the total state of both the
system and its environment is very different in structure
and is typically a highly correlated and often, but not
necessarily [5], entangled state. It is the hope that this
Letter can contribute to the debate on the dynamical
appearance of classical properties in quantum theory.
This debate is potentially becoming more timely than
ever with the availability of novel experiments on deco-
herence [10], let it be with microwave cavities, ion traps,
or nano-electromechanical systems.
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