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Comment on ‘‘Interferometric Detection of Optical
Phase Shifts at the Heisenberg Limit’’

Some time ago, Holland and Burnett [1] discussed a
method of performing Heisenberg-limited (HL) phase
shift measurements by driving a Mach-Zehnder interfer-
ometer (MZI) with a pair of Fock states of equal photon
number: jNi � jNi. According to [1], the uncertainty in
the phase shift measurement approaches �’HL � 1=�2N�
asymptotically for large N. The authors arrived at this
conclusion through the phase difference distribution of
the state inside the MZI, which was deemed localized
with a width given by 1=�2N� radians. Furthermore, the
authors assumed that the phase shift itself could be de-
tected by the usual method of subtracting the photo-
currents at the output beam splitter of the MZI, i.e.,
measuring 2ĴJ3 � âayoutâaout � b̂byoutb̂bout.

It turns out, however, that balanced detection is, in
principle, not a functional method for interferometry
with the given class of input states. The reason is appar-
ent at once when we rewrite 2ĴJ3 via the internal modes of
the MZI, âayb̂bei�’�#� 	 âab̂bye�i�’�#�, where ’ is the phase
difference between the arms of the device and # is a
degree of freedom of the output beam splitter. This senses
only single-photon transitions and because the twin
Fock states produce even numbers of photons inside the
MZI [2], hĴJ3i � 0. Hillery et al. [3] reexamined the
original detection method, pointing out that there are,
in fact, two narrow peaks, separated by 
 radians, in
the phase difference distribution. More recently, the pro-
posal of Ref. [1] was adapted to phase resolution mea-
surements between two components of a Bose-Einstein
condensate, with [4] and without [5] taking into account
the problem of vanishing hĴJ3i.

Clearly, higher-order quantum transitions are required
for a working scheme. Kim et al. [6] suggested as an
alternative the next order moment, i.e., ŜS � 4ĴJ23; however,
while this method attains the HL of phase sensitivity for
high N, the signal-to-noise ratio (SNR) for the measure-
ment of ŜS itself, hŜSi=�S, is rather low. In fact, from [3],
SNR �

���

2
p

, and this assumes ideal measurements.
In a recent paper [7], we reconsidered the Holland-

Burnett method in the context of parity measurements
performed on one of the output beams. Using the parity
operator ÔO � exp�i
N̂Nout�, where N̂Nout is the number op-
erator of the output mode being monitored, we showed
that hÔOi � PN�cos2’�, where PN�x� is a Legendre poly-
nomial. Our numerical calculations indicate that �’ �
�O=j@hÔOi=@’j ! �’HL � 1=�2N� for large N near
’ � 0, with favorable SNR, hÔOi=�O. The parity method
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encodes HL phase shifts because it inherently depends on
all higher-order moments of photodetection. The mea-
surement of parity could be accomplished by several
possible techniques including photon counting with im-
proved detectors with sensitivity at the level of a single
photon. One also could possibly use homodyning to re-
construct the Wigner function near the origin of phase
space, the Wigner function being the expectation value of
the displaced parity operator [8,9].

The parity operator approach we advocate is an out-
growth of our researches on interferometry with maxi-
mally entangled states [7,10] where, again, one has
hĴJ3i � 0. The ideas discussed here have been adapted to
the problem of phase resolution between two Bose-
Einstein condensates [11]. HL interferometry with parity
detection was recently demonstrated for two maximally
entangled trapped ions [12].
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