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Pulling Tethers from Adhered Vesicles
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The competition between adhesion and tether formation in bound vesicles is investigated. A
theoretical model is developed in which tethers are induced by the application of a pulling force to
the top of a strongly adhered vesicle. A critical onset force is identified where the tether spontaneously
appears as part of a first order shape transition. Further growth of the tether initiates a detachment
process that culminates in a continuous unbinding of the vesicle at a finite detachment force. Both
critical forces, as well as all shape parameters, are calculated as a function of the reduced volume and
the strength of adhesive potential.
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tigation deals with this problem and reveals a rich com- tether). The next term is the adhesion energy associated
Fluid membranes are unique among all two-
dimensional elastic sheets due to their vanishing shear
modulus. This property allows for spectacular deforma-
tions of these slender layers such as the formation of
thin tubular structures, known as tethers. Their extraction
can be realized by the application of a highly localized
force, balanced against an appropriate resistance mecha-
nism. The paradigmatic case for tether formation involves
pulling on beads [1] or micropipettes irreversibly bound to
a vesicle. These may serve as a means to exert axial
tension [2] or as anchor points in the case of flow experi-
ments [3].

The manipulation of tethers has been used as an inves-
tigative tool to elucidate the properties of membrane ma-
terials. In this manner, the bending modulus of bilayers
[1] and the nature of the dynamic interaction of mono-
layers within a single bilayer [4] have been determined.
Tether extraction from cells has enabled the quantification
of the coupling of the cell membrane to the supporting
cytoskeleton [5]. Recently, molecular motors have been
employed to induce tubulation in giant vesicles [6].

Several theoretical models relevant to tether formation
have appeared. The initial interest was focused on the
stability of free tubes [7] and cylindrical vesicles under
axial tension [8,9]. More recently, asymmetric tethered
shapes have been found to result from the application of a
force to the opposing poles of a vesicle [2]. In flat mem-
branes, tether induction has been shown to rely on appro-
priate boundary conditions imposed at the rim of the
tether [10,11], as has been verified experimentally [12].

A problem of significant biological and technological
relevance is that in which the resistance mechanism to
tether formation is provided by a finite adhesion potential
acting on another part of the vesicle. For example, such
counteraction has been used for the construction of
complex networks from tethered fluid vesicles [13].
Nevertheless, a theoretical work that provides an under-
standing of the external adhesive counteraction to tether
formation has not yet been provided. The present inves-
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petition between the attractive potential and shape
deformations.

Simple intuition suggests that the response of an ad-
hered vesicle to pulling would depend strongly on the type
of the adhesion achieved by the vesicle [14]. When the
vesicle is bound in a weak potential, only part of the ex-
cess free area (resulting from the volume reduction during
vesicle preparation) is used to form the adhesion plate.
Pulling on such a shape causes continuous deformations,
made possible by the unused excess area [15]. A strongly
adhered vesicle should clearly undergo a different sce-
nario. In these circumstances, the excess free area is
entirely consumed by the adhesion plate so that the ves-
icle assumes the shape of a tense spherical cap [14].
Because of constraints on the area and volume, no defor-
mations can be induced while maintaining a constant
adhesion area. However, should sufficient force be applied
to overcome the adhesive potential, a tether will be pulled
out of the vesicle, initiating a detachment process. The
tether can be expected to grow until the adhesion plate is
spent and the detachment process is complete. In the
current work, we quantitatively investigate this regime
of strong adhesion. As it is safe to assume a cylindrical
tether geometry [2], we consider shapes consisting of a
spherical cap (a vesicle) connected to a thin tube (a
tether). Variational methods are thus used to minimize
the following free energy functional:

F �
��L
R

� F�h� L� �WA� � �Atot � PVtot: (1)

The first term is the bending energy of a cylinder with
radius R and length L, and is proportional to the bend-
ing rigidity �. The variation of the bending energy of a
spherical cap is an order of magnitude smaller than that of
the other terms and may therefore be omitted. The second
term is the energy arising from the application of a point
force to the north pole of the vesicle. This energy is a
function of the strength of the force (F > 0), and the total
height (sum of the heights of the spherical cap h and the
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with a given contact potential, of strength W > 0, and is
proportional to the area of the adhered surface A�. The
last two terms in Eq. (1) emerge from constraints imposed
to maintain constant total area (Atot) and volume (Vtot), by
adjusting the Lagrange multipliers for the tension (�) and
pressure (P), respectively.

The results are presented in reduced units, scaled by
the area of a unit sphere As � 4�R2

s , and Rs � 1. Hence
p; �; w; v, and f become dimensionless parameters, and
are defined as p�PR3

s=�, ���R2
s=�, w�WR2

s=�, v �
3Vtot=�4R3

s��, and f � FRs=����. In addition, Atot � As.
For a vesicle of radius of R � 10 �m and bending modu-
lus � � 10�19 J, one unit of force f is equal to 0.3 pN, and
one unit of adhesion strength w is 10�7 Jm�2.

To find stationary solutions of the free energy func-
tional, the first variation with respect to all shape pa-
rameters (A�, h, L, and R) is performed. The obtained
relations are then solved simultaneously with the con-
straints on the total volume and area, for a given set of v,
w, and f. Physically relevant solutions are those that are
real and have values of all shape parameters greater than
zero (in addition, the tether radius must be smaller than
the radius of the spherical cap). Generally, there exist two
solutions that satisfy these requirements for a given set of
parameters. The shape associated with the lower total
energy is considered to be locally stable and is thus the
relevant one in the following discussion. Examples of the
calculated shapes are presented in Fig. 1.

Phase diagram.—The phase diagram can be presented
for either constant v (left panel of Fig. 2) or constant w
(right panel). In both cases, three regions can be observed.
Most prominent is the region shaded in gray, where stable
solutions are tethered vesicles. This region is open in the
f� w diagram as there is no theoretical upper limit to the
strength of the adhesion potential. As the reduced volume
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FIG. 1. An adiabatic force load initiates a detachment pro-
cess. Finite forces are found for both the tether onset (fo ’
23:3) and the vesicle detachment (fd ’ 114). Shapes of tethered
vesicles are presented for different forces in black. Gradual but
total loss of the adhesion area (top, gray circles) can be
observed as the tether length increases.
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of the vesicle must be in the range 0< v � 1, the entire
phase space (for fixed w) is presented in the f� v dia-
gram. The lower boundary of the gray regions is congru-
ous with the onset of tether formation (denoted as fo) and
is a line of a first order shape transition. For forces below
this line, the shape of a tetherless spherical cap is a stable
solution. The upper boundary of the regions where tethers
are stable (denoted as fd) corresponds to forces at which
the tethered vesicle detaches from the surface with the
adhesion area A� ! 0 when f ! fd. As detachment is a
continuous process, this boundary is a line of a second
order shape transition. Above this line, the stable solution
corresponds to a free vesicle far away from the substrate.

Tethered shapes.—The calculation of shapes, by mini-
mizing Eq. (1) subject to constraints, results in algebraic
expressions for all variables. Because of the complexity of
these equations, they will not be presented here in their
full form. However, it is possible, by assuming that the
volume of the tether is much smaller than the volume of
the vesicle, to obtain an expression for the tether length as
a function of force:

L ’ �1� v2=3�f: (2)

This approximate relationship assumes the role of an
asymptote at large forces and adhesion strengths (see
Fig. 3). For small w, the exact solution is nonlinear in
the whole range of applicable forces and the approximate
solution defined by Eq. (2) is reached only at the detach-
ment point. For larger adhesion strengths, the linear de-
pendency of the tether length on the applied force is in
good agreement with the exact solution, for the majority
of feasible forces. This result predicts that, for smaller
values of v, the tether length grows faster with the force.
Nevertheless, for a fixed volume, very similar solutions
for the tether length are obtained for very different w. As
an application of Eq. (2) the linear regime of tether
retraction from Fig. 5 of Ref. [13] has been fitted and
resulted in a reduced vesicle volume of v � 0:93
 0:02.

Extracting the leading terms from the exact solutions
(not presented) leads to well known results for the tether
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FIG. 2. Examples of f� w (left) and f� v (right) phase
diagrams. Regions of locally stable tethered shapes are indi-
cated in gray. The line associated with fo is the boundary
between regions of stable tethered shapes and stable shapes
consisting of a bound spherical cap. The fd line belongs to
continuous unbinding transitions from bound tethered shapes to
free vesicles. Approximate solutions (lines) from Eqs. (4) and
(5) and the exact solutions (circles) are shown.
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FIG. 3. The length of a tether as a function of force for
different adhesion strengths. The approximate solution (thick
line) is overlaid with exact solutions (dotted lines).
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radius and tension:

R �
2

f
; � �

f2

8
: (3)

These relationships have already been derived and veri-
fied experimentally [1,8], for the special case of a tether
extracted from a vesicle partially drawn into a pipette.
Now, however, these results are obtained as part of a more
general model, which includes a finite adhesion strength.
As was the case for the tether length, these expressions
will become exact in the limit of large f and w (and
f=w � const). Inspection of Fig. 4, where the approxi-
mate result is compared to the exact solution, clearly
demonstrates this limit.

Within the current model, shapes with arbitrarily high
tensions can be calculated, but their existence is limited
by the lysis tension of the membrane (�l � 10�3 Nm�1).
Once such tension is exceeded, the tether will rupture.
Using Eq. (3), it is easy to estimate the lysis point
force to be Fl � 90 pN for a membrane with � � 25kT.
Interestingly, the approximate solutions obtained for R
and �, are not sensitive to the adhesion strength or the
reduced volume. Consequently, for any value of the ap-
plied force (fo < f < fd), almost identical solutions can
be found for quite different values of v and w. This can be
seen in Fig. 4, where the intervals of stable solutions
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FIG. 4. The tether radius as a function of force for different
adhesion strengths. The exact solution (thick line) is rapidly
approached by the approximate one (dotted line). The broken
arrows indicate the regions where stable solutions are found for
a particular adhesion strength.
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belonging to different w overlap. It is therefore important
to define the boundaries of the interval where tethered
shapes exist as a function of state variables (v and w).
This will be discussed in the following sections.

Onset of tether formation.—The conditions for tether
appearance can be determined by setting R and L to zero.
In this case, the constraints on the area and volume of the
vesicle with no tether are sufficient to determine the
characteristics of the spherical cap (h and A�). The shape
obtained in this way is identical to the one arising from
the variation of the free energy at f � 0. It is the spherical
cap of minimum height ho (see Fig. 5) and maximum
adhesion area (A�

o � 2� h2o=2). Because of strong adhe-
sion, this shape is a function of only the reduced volume
and is not dependent on the adhesion strength. At the
onset of tether formation, the tension must approach that
given in Eq. (3). This may be used to derive the approxi-
mate onset force [fo � fo�v;w�] and pressure [po �
po�v;w�]:

fo ’
�ho �

���������������������������������������
h2o � A�2

o � A�
oh2ow

q

0:5A�
o

; po ’
4w� f2o
2ho

:

(4)

The comparison of this force with the exact solution is
presented in the phase diagram (see Fig. 2, both panels).
Excellent agreement is obtained for the whole range of
adhesion strengths and reduced volumes. As the height of
the vesicle (ho) and the size of the adhesion plate (A�

o) are
independent of the adhesion strength, the onset line (fo)
in the left panel of Fig. 2 is proportional to

����
w

p
. This

analysis infers that for all f < fo, the spherical cap pa-
rametrized with ho and A�

o is a stationary stable solution.
A force load will merely adjust the tension and the
pressure until the tether emerges at f � fo.

In the limit of strong adhesion �w ! 1� this scenario is
exact. However, in the regime of strong adhesion �w � 1�,
the very small amounts of excess area that remain free
upon adhesion could allow for continuous (but slight)
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FIG. 5. Left: The exact results for the height of the vesicle as
a function of force for different adhesion strengths (thick lines).
Approximate onset and detachment heights (all w) and forces
(w � 60) are indicated. Right: The exact onset heights (dotted
line) and a comparison of approximate (thin line) and exact
(empty circles) solutions for the detachment height as a func-
tion of reduced volume. Exact solutions are calculated with
w � 80. The filled circles indicate solutions for v � 0:88.
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vesicle deformations at forces close to the zero force.
Within the current model, these shapes are mapped onto
the spherical cap at f � 0 and should not affect the
discontinuous nature of the shape transition. The appear-
ance of such a transition is a consequence of both the
applied constraints and the adhesion strength. Hence, it is
not surprising that models for tether formation [10,11],
which lack an equivalent of adhesion to provide a counter-
active contribution to the free energy (and are in a differ-
ent geometry), find a continuous transition.

Detachment.—A critical detachment force (fd), corre-
sponding to zero adhesion area (A�

d � 0), can be calcu-
lated by assuming that the volume of the tether is much
smaller than the volume of the vesicle. In this case h !
2v1=3 when A� ! 0. The validity of this assumption can
be confirmed by the inspection of Fig. 5. For constant
reduced volume (left panel), the asymptotic detachment
height (hd � 2v1=3) is reached independently of the ad-
hesion strength. For a constant adhesive potential (right
panel), very good agreement between the asymptotic and
the exact solutions is obtained. However, discrepancies
emerge for small values of v, implying that the chosen w
(w � 80) acts as a strongly adhesive potential for large
values of the reduced volume, but is relatively weak for
very deflated vesicles (v < 0:35). Indeed, as w increases,
the agreement between the approximate and exact solu-
tion improves for small v. Minimizing the free energy
using the expression for hd leads to an approximate rela-
tionship for the detachment force:

fd � 2v1=3w: (5)

This equation is plotted in the aforementioned phase
diagrams (Fig. 2). For constant volume (left panel), the
linear dependence of fd on the adhesion strength is con-
firmed. In the diagram for constant w (right panel), fd
obeys the inverse cubic dependence on the reduced vol-
ume. The discrepancies for small volume between the full
algebraic solution and the approximate one share the
same origin as those discussed above for the detachment
height. When the expression for fd is combined with
Eqs. (2) and (3), the remaining detachment variables
emerge as functions of only the state parameters v and w:

Rd � v�1=3w�1; Ld � 2�v1=3 � v�w;

�d � 1
2v

2=3w2; pd � �v1=3w2:
(6)

Closer inspection reveals that the obtained detachment
pressure and tension satisfy the Laplace equation.

Summarizing perspective.—Applying a pointlike force
to a strongly bound vesicle leads to tether formation for a
range of forces intermediate between the onset and de-
tachment values. These two critical forces are uniquely
determined by the experimentally relevant variables, w
and v. Together with good estimates of the tether length
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and radius, this model should provide an experimentally
useful tool to quantitatively probe the adhesion strength
by monitoring the geometrical properties of the tether.

An important future ramification of this model will
allow for discrete binding sites. In this case, the effective
strength of adhesion may vary during a force load, due to
the exchange of mobile receptors between the bound and
free parts of the membrane. Therefore, during the detach-
ment process, the plain applicability of the current results
is not obvious. However, at the very least, average adhe-
sion strengths, for both the onset and detachment points,
should be obtainable from the presented model.

The conclusions outlined herein arise because of the
competition between adhesion and tether formation. As
such, a similar treatment should be applicable to arbi-
trary tether positions. In this way, the stability of lipid
nanotube-vesicle networks [13] could well be understood
following the reasoning presented in this Letter.
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