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Effective Quantum Spin Systems with Trapped Ions
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We show that the physical system consisting of trapped ions interacting with lasers may undergo a
rich variety of quantum phase transitions. By changing the laser intensities and polarizations the
dynamics of the internal states of the ions can be controlled, in such a way that an Ising or Heisenberg-
like interaction is induced between effective spins. Our scheme allows us to build an analogue quantum
simulator of spin systems with trapped ions, and observe and analyze quantum phase transitions with
unprecedented opportunities for the measurement and manipulation of spins.
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FIG. 1 (color online). (a) Possible laser configuration such
that the ions experience a force along the 
 � x, y, and z
directions, if they are in j"i
. (b) Each pair of copropagating
lasers independently excite a Raman transition j"i ! j#i with
different detunings from the virtual excited state jei (such that
they do not interfere). The relative phase of each pair of
copropagating lasers along 
 is chosen such that the state j#
i
 is dark. Counterpropagating lasers form a standing wave, so
that the bright level, j"i
, experiences a position-dependent ac-
Stark shift, �
�x
	

2=�
, where �
�x
	 is proportional to the
amplitude of the standing wave. The linear term in �
�x
	
around the equilibrium position of the ions gives the force that
pushes the ions in the direction 
. Along the z direction only
one pair of counterpropagating lasers is needed. This direction
the ions have two internal ground hyperfine levels, which
play the role of components of an effective spin 1=2 (our

does not need to coincide with the trap axis for the case of a
linear ion trap.
Introduction.—Quantum spin models are a paradigm
for the study of many-body effects, and show intriguing
phenomena like the existence of quantum phase transi-
tions at certain values of the parameters that govern the
spin Hamiltonian [1]. In this work we show that quantum
phase transitions can be induced by lasers in ion traps,
where the internal states of the ions play the role of
effective spins. In our scheme an Ising, XY, or XYZ
spin-spin interaction is transmitted by collective vibra-
tional modes and can be switched and tuned by the lasers
and by the choice of trapping conditions. In this way, a
system of trapped ions could be used as an analogue
quantum simulator for magnetic systems [2,3]. Other
schemes for the simulation of quantum problems [4–6]
rely on the use of a quantum computer [7–11] or on the
stroboscopic change of parameters [12,13]. Our proposal
is not based on quantum gates, i.e., the requirements
for its implementation are much less stringent, and it is
not exposed to the errors accumulated in stroboscopic
methods.

The main advantage of ions is that they can be trapped
and cooled very efficiently, and therefore they can be
stored at fixed positions [14]. Furthermore, their internal
states can be precisely manipulated using lasers, and
measured with basically 100% efficiency [15]. Our pro-
posal, thus, would make it feasible to study quantum
phase transitions in this particular experimental system,
where one is able to tune the range and strength of
the interaction, and manipulate and measure single effec-
tive spins, something that is not possible in solid-state
systems.

Spin-spin interaction.—Our scheme works with a set of
N ions trapped by electric and/or magnetic forces. For
example, they could be ions in a linear Paul trap, in
microtraps in one or two dimensions, or in a Penning
trap. In order to simplify the discussion that follows, we
focus here on the one-dimensional case: a chain of
trapped ions. Let us assign the z (x, y) vectors to the axial
(radial) directions relative to the chain. We assume that
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scheme can be easily extended to simulate larger spins).
We denote by 	
, 
 � x; y; z, the Pauli operators, and by
j#i
 and j"i
 the corresponding eigenstates. All the ions
are driven by the same off-resonant laser beams propa-
gating along the three spatial directions [Fig. 1(a)]. In the
most general configuration, we assume that the lasers
propagating along 
 push the ions in that direction pro-
vided they are in states j "i
. This can be achieved by
choosing the relative phases of the lasers so that the state
j#i
 is dark with respect to the lasers propagating along
the direction 
 [see, e.g., Fig. 1(b)].

As a result of Coulomb repulsion, vibrational degrees
of freedom are collective modes (phonons): Hv �P

;n �h!
;na

y

;na
;n, where ay
;n ( �h!
;n) are the operator
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(energy) of the n mode in the 
 direction. Our Hamil-
tonian includes also the force produced by the lasers (Hf),
and the action of effective magnetic fields (Hm):

H �Hv 
Hf 
Hm;

Hf ��2
X

;i

F
q
;ij"ih"j
;i; Hm �
X

;i

B
	
i : (1)

The fields B
 can be simulated by lasers acting on the
internal transition of the ions. q
;i are the spatial coor-
dinates of each ion in each 
 direction, and i refers to the
site. The local coordinates q
;i can be expressed in terms
of the collective modes by means of the matrices M
, so
that Hf can be expressed in the following way:

Hf � �
X

;i;n

F

M


i;n����������������������
2m!
;n= �h

p �ay
;n 
 a
;n	�1
 	
i 	: (2)

A suitable method to get the promised spin
Hamiltonian is to apply a canonical transformation,
such that the coupling Hf is eliminated from the
Hamiltonian [11]:

U � e�S ; S �
X

;i;n

�
i;n�1
 	
i 	�a
y

;n � a
;n	;

�
i;n � F

M


i;n

�h!
;n

����������������
�h

2m!
;n

s
; (3)

where �
i;n are the displacements of the modes in units of
the ground state size. In the new basis the Hamiltonian (1)
includes an effective spin-spin interaction:

e�SHeS � Hv 

1

2

X

;i;j

J
i;j	


i 	



j 


X

;i

B0
	
i 
HE; (4)

where

�J
i;j �
X
n

F2



m!2

;n

M

i;nM



j;n � 2

X
n

�
i;n�


j;n �h!
;n: (5)

The underlying physical mechanism in J
i;j is the trans-
mission of an effective spin-spin interaction by collective
vibrational modes. The effective magnetic fields in Eq. (4)
receive a contribution from the pushing forces B0
 �
B
 � F2


=�m!2

	, where !
 are the trapping frequencies

in each direction. Note that the extra term in B0
 does not
depend on the site of the ion. HE describes the residual
coupling between the effective spins and the collective
vibrational modes. To lowest order in �
i;j, it is given by
the following expression:

HE ��
1

2

X

;
0
i;n;m

�
i;n�

0

i;m �h!
;n�a
y

;n 
 a
;n	�a

y

0;m � a
0;m	

� �	
i ; 	

0

i �: (6)

In the transformed basis, we get an anisotropic
Heisenberg (XYZ) interaction between effective spins.
HE is a perturbation that limits the accuracy of
207901-2
the simulation, and can be neglected in the case of
anisotropic traps, in which the phonon terms in Eq. (6)
are highly rotating, or in the case of low phonon
temperatures.
J
i;j depends on the characteristics of the vibrational

modes in the corresponding 
 direction. The ions occupy
the equilibrium positions z0i along the chain, in such a
way that the Coulomb repulsion is balanced with the
trapping forces. The second derivatives of the Coulomb
energy with respect to these displacements determine the
elastic constants of the chain [16,17]:

V �
1

2
m
X

;i;j

K

i;jq



i q



j ;

K

i;j �

8><
>:
!2

 � c


P
j0��i	

e2=m
jz0i�z

0
j0
j3
; i � j;


c

e2=m

jz0i�z
0
j j

3; i � j;

(7)

where cx;y � 1, cz � �2. The unitary matrices M


in (2) diagonalize the vibrational Hamiltonian,
M


i;nK


i;jM



j;m � !2


;n!n;m, and Eq. (5) implies that we
can express the effective interaction in the following way:

J
i;j � �
F2



m
�1=K
	i;j: (8)

If we assume a constant distance between ions, d0, then
we can summarize the properties of the vibrational
modes by means of the parameters #
 � jc
je2=
m!2


d
3
0. We distinguish two cases: (i) Stiff modes:

#
 � 1 implies that the Coulomb interaction can be
considered as a perturbation to the trapping potential,
so that the inverse of the elasticity matrix K
 can be
calculated to first order in the nondiagonal terms in
Eq. (7): J
i�j � c
F

2

e

2=�m!2

	

2jz0i � z0j j
3. We get a

spin-spin interaction with a dipolar decay law that is
antiferromagnetic (ferromagnetic) if it is transmitted by
the radial (axial) vibrational modes. (ii) Soft modes:
#
 � 1 implies that the Coulomb interaction is impor-
tant against the trapping of the ions in the 
 direction, a
situation that is discussed below.

Experimental realizations.—(i) Arrays of ion micro-
traps: In this case ions are confined individually by
microtraps, in such a way that they form a regular array
in one or two dimensions [18]. A 1D array of microtraps
can be realized, for example, by using a linear Paul trap,
and an additional off-resonant standing wave that creates
a periodic confining potential in the axial direction. In
the 1D case, forces in the three spatial directions simulate
an effective XYZ interaction, antiferromagnetic, or ferro-
magnetic, for the (x, y), or z spin components, respec-
tively. If the radial trapping frequencies !x;y are large
enough, the stiff limit could be reached, and the spin-spin
interaction would have a dipolar decay. By relaxation of
the radial trapping frequencies the spin-spin interaction
could be controlled and, in particular, the interaction
between second neighbors could be suppressed, similar
207901-2
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to the case of linear Paul traps (see below). The effective
XYZ interaction, with the addition of effective magnetic
fields, allows one to study a rich variety of quantum phase
transitions.

(ii) Linear Paul traps: Paul traps are currently used to
cool and arrange ions in 1D Coulomb crystals, in which
the distance between ions is not constant. We can, how-
ever, define an averaged lattice constant d0, to understand
the qualitative properties of the vibrational modes. We
have two cases, depending on the orientation of the
pushing forces: (a) Axial force. The equilibrium position
of the ions are such that #z � 1 [17]. The center of mass
mode has the main contribution in Eq. (5), so that we get a
long-range ferromagnetic interaction. Our numerical cal-
culation for a chain of N � 50 ions [Fig. 2 (left)] shows
that a force in the z direction results in an interaction, Ji;j,
with a range comparable to the size of the chain. (b)
Radial force. The characteristics of the effective spin-
spin interaction drastically change when lasers push the
ions in the radial (x, y) directions. The stability of the
chain against zigzag deformation implies that #x;y < 1
[17]. If the trapping frequencies !x, !y are large enough,
the limit in which the spin-spin interaction shows a
dipolar decay can be easily reached. For #x;y � 0:05,
the spin-spin interaction departs from the dipolar case,
and the main contribution comes now from the collective
stretched mode. With the proper choice of trapping fre-
quencies, the second-neighbor term in the dipole inter-
action can be suppressed [see Fig. 2 (right)]. The possible
experimental configurations in a linear Paul trap are the
same as those for a linear array of ion microtraps, with
the difference that the modes in the axial direction trans-
mit a long-range interaction.

(iii) Penning traps. Finally, 2D Coulomb crystals could
be used for the simulation of 2D quantum spin systems.
Cooling of ions in a 2D hexagonal lattice has been dem-
onstrated in Penning traps [19,20]. This experimental
FIG. 2 (color online). Effective spin-spin interactions in a
Coulomb chain. Left: long-range ferromagnetic interaction
transmitted by the longitudinal modes (N � 50 ions). Right:
short-range antiferromagnetic interaction transmitted by the
radial modes (N � 100). For #x;y � 0:01 (upper curves), the
effective interaction shows a dipolar decay, Ji;j / ji� jj�3,
while for #x;y � 0:1 (lower curves), the second-nearest neigh-
bor interaction is suppressed.

207901-3
setup has the additional advantage that the hexagonal
lattice could allow one to simulate the effect of magnetic
frustration. For example, a pushing laser in the direction
perpendicular to the 2D crystal would induce an antifer-
romagnetic Ising interaction. The decay would also be
dipolar if the 2D vibrational modes transverse to the
crystal plane are in the stiff limit.

In all three experimental systems discussed above the
simplest laser configuration consists of only one force in a
given direction, so that an Ising interaction /J	z	z is
simulated. With the addition of an effective transverse
field /B	x, the spin system presents a quantum phase
transition between a ferromagnetic (or antiferromagnetic)
ordered ground state (J � Bx) and a disordered ground
state (Bx � J), at a value J � Bx [1]. For example, one
could proceed as follows: (1) Prepare the state j# . . . #i.
(2) Switch on adiabatically the magnetic field Bx.
(3) Switch on adiabatically the effective interaction up
to a given value J. (4) Measure the global fluorescence.
This sequence could be repeated with several values of J,
starting with J � Bx, and increasing the value of the
spin-spin interaction in each experiment. The phase tran-
sition would be evidenced in the global fluorescence,
which would show the population of the internal states
of the ions, and, thus, the emergence of ferromagnetic (or
antiferromagnetic) order in the effective spins. Fur-
thermore, the possibility of addressing single ions could
allow us to create excitations (spin waves), and nonequi-
librium quantum dynamics could also be studied, for
example, by switching nonadiabatically the interaction.

Validity of the effective spin Hamiltonian.—Assume
that the ions are initially in the internal state j ii that
would evolve to j fi � exp��iHSt= �h	j ii, under the
action of the simulated spin Hamiltonian, HS �P

;i;jJ



i;j	



i 	



j 


P

;iB

0
	
i . The fidelity of the simula-
tion is given by the probability of finding j fi after the
real evolution:

F � i	 � he�iHt= �h(i � (phe
iHt= �hi f

� heSe�i�H0
HE	t= �he�S(i
� (pheSei�H0
HE	t= �he�Si f ; (9)

where (i � j iih ij, and the vibrational modes are ini-
tially in a mixed thermal state ((ph). H0 � Hv 
HS is
the Hamiltonian without residual spin-phonon coupling.
In order to simplify the discussion, we define � �
F

����������������
�h=2m!

p
= �h! (
 is omitted) as the parameter that char-

acterizes the displacement of the vibrational modes, and
estimate the error, E � 1�F , in a series in �. If we use
only one force in a given direction, then HE � 0, and the
error has its origin in the canonical transformation. An
expansion of (9) in S allows us to estimate E / �2�1

2 �nn	, where �nn is the mean phonon number.We estimate now
the contribution from HE. If two or three forces act on
the ions, then HE gives an additional contribution that
vanishes at zero temperature, E / �nn. We can avoid the
need to cool the ions by imposing different trapping
207901-3
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FIG. 3 (color online). Simulation of the XY model with two
ions, for !x � 1:4!z, and several values of !y. Left: Error of
the simulation vs mean phonon number �nn, in a symmetric
linear ion trap (!x � !y) (thin line) and in an asymmetric
trap, !y � 0:75!x (thick line), with displacements � � 0:05
(continuous line), and � � 0:02 (dashed line). Right: Error of
the quantum simulation vs the displacement of the phonons (�)
for the asymmetric trap, and �nn � 0:25. The oscillations are due
to the nonresonant contributions from each vibrational mode,
and the averaged error satisfies E / �2 (straight line).
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frequencies in each direction, so that only nonresonant
terms appear in Eq. (6). Now, E / J2=�!x �!y	

2 �
O��4	, and the main contribution to the error is again
the one given by the canonical transformation.

We illustrate how the effective spin-spin interaction
works by presenting a numerical simulation for the case
of two trapped ions. We consider two lasers that push the
ions with the same intensity in the radial (x, y) directions,
so that an effective isotropic XY interaction (Jx � Jy �
J) is simulated during a time T � +=�8J	. The evolution
of the effective spins under such conditions corresponds
to the application to the initial state of a

��������������
SWAP

p
gate [5].

The Hamiltonian includes the four vibrational modes in
the radial directions, and the two effective spins that
correspond to the internal states of the two ions. For the
numerical solution, in the range or parameters considered
here, it is enough to truncate the phonon Hilbert space
by taking only the three lowest states in each mode. As
a figure of merit, we have chosen the averaged fidelity,
F �

R
d iF � i	, that describes the averaged accuracy of

the simulation upon integration over all the possible
initial states.

The main results of our numerical calculation are
illustrated in Fig. 3. By introducing a small anisotropy
(!x � !y) in the radial trapping frequencies, we get rid of
the dependence of the error on the mean number of
phonons, and the requirements for the cooling of the
trapped ions are not so stringent [Fig. 3 (left)]. In Fig. 3
(right) we show the dependence of the error on the dis-
placement �, for the case of the asymmetric trap. With
occupation numbers in the radial modes of �nn � 0:25 and
!z � 10 MHz, our Eq. (8) allows us to calculate an
interaction strength J= �h � 10 kHz, with error E �
10�2. The interaction strength is much larger than typical
207901-4
decoherence or heating rates in Paul traps, so that our
proposal could be implemented with current technology.

Conclusions and outlook.—We have presented a
method to simulate Ising, XY, and XYZ interactions be-
tween effective spins with trapped ions. Our scheme relies
on the coupling of the internal states with the collective
vibrational modes, and leads to the observation of quan-
tum phase transitions in ion traps. With some modifica-
tions, our proposal could also be used to simulate many
other systems of great interest in condensed matter
physics. For example, the action of pushing forces on a
single ion realizes a spin-boson model, with the bosonic
bath being given by the vibrations of the ions. Different
laser configurations than the one presented here, allow us
to simulate other particular spin Hamiltonians.
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