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S Mixing and Quantum Tunneling of the Magnetization in Molecular Nanomagnets
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The role of S mixing in the quantum tunneling of the magnetization in nanomagnets has been
investigated. We show that the effect on the tunneling frequency is huge and that the discrepancy (more
than 3 orders of magnitude in the tunneling frequency) between spectroscopic and relaxation
measurements in Fe8 can be resolved if S mixing is taken into account.
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neutron scattering (INS) [7,8], optical spectroscopy [9], mixing), the Hamiltonian Eq. (2) can be projected onto
Molecular nanomagnets [1] are molecules containing
transition-metal ions whose spins are so strongly ex-
change coupled that at low temperature each molecule
behaves like a single-domain particle with fixed total
spin. One of the most interesting phenomena displayed
by these systems is quantum tunneling of the direction of
the total spin through energy barriers [2,3]. The measured
steplike magnetization curves of Mn12 and Fe8 provided
macroscopic evidence of relaxation through quantum
tunneling. The latter is revealed by resonances observed
in the relaxation rate at specific values of the external
magnetic field BAC, at which energy levels on opposite
sides of the anisotropy barrier are nearly degenerate and
anticrossings (ACs) in the field dependence of the ener-
gies occur. The relaxation rate depends crucially on the
value of the so-called tunnel splitting 
, i.e., the gap at
BAC between the quasidegenerate states. In particular, at
very low temperature T and at short times t, the magne-
tization relaxes as 1�

�����
�t

p
, where � / 
2 [4]. For Fe8, 


was extracted in Ref. [3] by measuring with a microsquid
apparatus the magnetization steps induced by sweeping a
longitudinal (i.e., parallel to the easy axis) applied field
Bz across BAC. The size of these steps was linked to the
tunnel splitting through the Landau-Zener formula

� � 1� e�
2=A; (1)

where � is the tunneling probability at a level anti-
crossing, and A is proportional to the field sweeping
rate. When the experiment is performed in a static trans-
verse field By, 
 is found to display oscillations as a
function of By, which in a semiclassical approach reflect
the destructive interference of tunneling pathways.

Equation (1) had been deduced by neglecting decoher-
ence sources, such as hyperfine and dipolar fields. Never-
theless, it remains valid if the sweeping rate is as fast as
that actually used in the experiments [5]. In addition, the
model proposed in Ref. [6] shows that the incoherent
Zener tunneling can be described by Eq. (1) with 

renormalized by a factor

���
2

p
.

A striking circumstance is that the measured value of

 seems completely incompatible with the value calcu-
lated by using the Hamiltonian determined by inelastic
0031-9007=04=92(20)=207205(4)$22.50
and electron paramagnetic resonance [10]. Indeed, the
measured zero-field gap 
�By � 0� between the two low-
est levels is near 10�7 K [3], while the value calculated
(4:44� 10�11 K) is more than 3 orders of magnitude
smaller. This huge discrepancy seriously hinders any at-
tempt to reach a satisfactory theoretical modeling of the
quantum tunneling of the magnetization. The purpose of
this Letter is to show that commonly neglected quantum
fluctuations of the magnitude of the total spin of the
molecule (S mixing [11,12]) hugely affect the tunnel
splitting of Fe8 and allow the above-mentioned discrep-
ancy to be solved. Since Fe8 displays a relatively small
degree of S mixing, we expect the tunnel splitting of
many nanomagnets to be influenced even more heavily
than in Fe8 by such fluctuations.

Each Fe8 molecule can be described by the following
spin Hamiltonian:

H �
X

i>j

Jijsi � sj 	
X

i

X

k;q

bqk�i�O
q
k�si� 	

X

i>j

si �Dij � sj

� g�B

X

i

B � si; (2)

where si are spin operators of the ith Fe3	 ion in the
molecule (si � 5=2). The first term is the isotropic
Heisenberg exchange interaction. The second term de-
scribes the local crystal fields (CFs), with Oq

k�si�
Stevens operator equivalents for the ith ion [13] and
bqk�i� CF parameters. Here k � 2 or 4 (larger values of
the rank k are forbidden for d electrons [13]), and q �
�k; . . . ; k. The third term represents the dipolar aniso-
tropic intracluster spin-spin interactions. The last term is
the Zeeman coupling with an external field B. The ex-
change constants Jij used in this Letter are those deter-
mined from susceptibility [14].

While the Heisenberg term is rotationally invariant
and therefore conserves the length jSj of the total spin
S �

P
isi, the anisotropic terms do not conserve this

observable. Nevertheless, since the Heisenberg contribu-
tion is usually largely dominant, jSj is nearly conserved,
and the energy spectrum of H consists of a series of level
multiplets with an almost definite value of jSj. By ne-
glecting the mixing between different S multiplets (i.e., S
 2004 The American Physical Society 207205-1



FIG. 1 (color online). Calculated INS intensity for a Fe8
powder with the spin Hamiltonian Eq. (3) and various parame-
ter sets. The energy resolution has been fixed to the experi-
mental value of 19 �eV [7]. The parameters used in Ref. [16]
are close to those used in Ref. [3] and yield almost the same
intensity curve. The inset shows a schematic view of Fe8.
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each S multiplet (strong-exchange limit):

Hsub � B0
2O

0
2�S� 	 B2

2O
2
2�S� 	 B0

4O
0
4�S� 	 B2

4O
2
4�S�

	 B4
4O

4
4�S� � g�BB � S; (3)

where S is a vector spin operator with S equal to the total
spin of the S multiplet [15]. The parameters BQ

K are
calculated from bqk�i� and Dij by CF and dipolar projec-
tion coefficients. This approach, applied to the S � 10
ground manifold of Fe8, has allowed the interpretation
of INS data very satisfactorily by assuming B0

2 �
�9:75� 10�2 K, B2

2 � �4:66� 10�2 K, B0
4 �

1:0� 10�6 K, B2
4 � 1:2� 10�7 K, and B4

4 � 8:6�
10�6 K [7,8]. Very similar parameter values are obtained
from optical spectroscopy [9] and electron paramagnetic
resonance [10]. In particular B4

4, which has the greatest
effect on 
, is the same. In order to reproduce the mea-
sured magnitude and oscillations of 
 with Eq. (3), val-
ues of BQ

K incompatible with neutron results had to be
assumed [3,6,16]. In particular, B4

4 was 1 order of magni-
tude larger and its sign was reversed. In Fig. 1 we show
calculations at T � 9:6 K of the INS spectrum of a Fe8
powder. The parameters used in Refs. [3,6,16] do not
reproduce the INS spectra satisfactorily, neither in
the higher-energy part measured in Ref. [7] nor in the
lower-energy part measured with the high resolution
experiment of Ref. [8]. If the strong-exchange-limit
Hamiltonian (3) is used, there is no way to reproduce
with a unique set of parameters the magnitude and be-
havior of 
 and the spectroscopic results. In the follow-
ing, we show how this discrepancy can be removed if S
mixing is taken into account. Indeed, although in Fe8 S
mixing is a small perturbation (e.g., it produces negligible
changes in calculated spectroscopic quantities), its effect
on 
 is very large because it provides efficient tunneling
channels.

In order to evaluate S-mixing effects, we followed the
method developed in [11], in which S mixing is included
up to the second order in the anisotropy by a unitary
transformation applied to the complete Hamiltonian (2).
The system can be still described as an effective spin
S � 10, provided the spin-Hamiltonian (3) is properly
modified: the parameters of the Stevens operators are
renormalized, and new higher rank (K > 4) terms are
added. These latter are forbidden for d electrons in the
strong-exchange limit. The advantage of using this
method with respect to large-scale numerical diagonal-
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ization (e.g., using the Lanczos algorithm) is twofold:
first, it allows calculation times to be reduced drastically.
In fact, the time-consuming part of calculation [i.e.,
computing � and � in Eqs. (9a) and (9b)] does not
depend on the specific set of local CF parameters, and
therefore has to be performed only once. The second
advantage is that the simple and physically transparent
single-spin formalism of the strong-exchange limit is
recovered.

Using as basis vectors the eigenvectors j�SMi of the
isotropic exchange H0, the full Hamiltonian matrix H of
Eq. (2) can be written as the sum of three terms

H � H0 	H1 	H2; (4)

where H1 	H2 represents the anisotropic interactions. H1

has nonzero elements only within the S multiplets, while
H2 joins states with different �S and is the term respon-
sible for the mixing. H2 is neglected in the strong-
exchange limit of Eq. (3).

The perturbational procedure [11] consists in perform-
ing a unitary transformation on H such that the off-
diagonal (in �S) blocks of the transformed Hamiltonian
H0 are zero up to second order in the anisotropy. Hence, in
the new basis, states belonging to different multiplets are
uncoupled and the system can be described as an effective
spin multiplet, as in the strong-exchange limit. The ma-
trix elements of H0 inside the ground multiplet S � 10 are
given by
hSMjH0jSM0i � E0�M;M0 	 h�SMjH1j�SM0i �
X

�00S00M00

h�SMjH2j�
00S00M00ih�00S00M00jH2j�SM

0i

E0�00S00 � E0
; (5)
where E0 is the lowest eigenvalue of H0 and j�SMi are the
corresponding eigenvectors. j�00S00M00i are excited eigen-
vectors of H0 with energy E0�00S00 .

The second term in Eq. (5) coincides with the strong-
exchange Hamiltonian (3), while the last term represents
mixing corrections. By exploiting the Wigner-Eckart
theorem [11], the latter can be written in general as
X

K;Q

~BBQ
KO

Q
K; (6)

with K � 8 and even, and �K � Q � K. Hence
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FIG. 2. Calculated distribution of values of the tunnel split-
ting 
�Bz � 0; By � 0� normalized to the value 
0 � 4:44�
10�11 K obtained without S mixing (with the parameters
obtained from INS). The local CF parameters bqk�i� vary on
grids [different in (a) and (b)] defined in the text. Arrows
indicate the measured ratios. Insets show the distribution of
values of C6

6 on the same grids.
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H1 	H2 �
X

K;Q

CQ
KO

Q
K; (7)

where CQ
K � BQ

K 	 ~BBQ
K (BQ

K � 0 for K > 4). Therefore on
the one hand, S mixing introduces in the effective
Hamiltonian new terms forbidden in the strong-exchange
limit, and on the other hand, it renormalizes the coeffi-
cients of the other terms (with K � 4). This implies that
the CF parameters determined by INS are to be regarded
as CQ

Ks rather than as the BQ
Ks of Eq. (3). The parameters

~BBQ
K are given by linear combinations of products of re-

duced matrix elements. For example,

~BB 6
6 �

X

i;j

b22�i�b
4
4�j���i; j� 	

X

i

b44�i���i�; (8)

with

��i; j� �
XS	2

S00�S�2

cS�S00
66

�
X

�00

h�SjjT�2��i�jj�00S00ih�SjjT�4��j�jj�00S00i
E0�00S00 � E0

(9a)

and

��i� � �
���
2

p X

j;k

Jujk
XS	2

S00�S�2

cS�S00
66

�
X

�00

h�SjjT�2��11jjk�jj�00S00ih�SjjT�4��i�jj�00S00i
E0�00S00 � E0

:

(9b)

i, j, and k label magnetic ions; T�K��i� and T�2��11jjk� are
the tensor operators describing the local CF and dipole-
dipole interactions [17]. Jujk are defined in terms of the
elements of Dij [Eq. (2)] in Ref. [17]. The cS�S00

66 coeffi-
cients are defined according to the theory developed in
[11]. Expressions similar to Eqs. (8), (9a), and (9b) are
obtained for the other parameters ~BBQ

K , which are all ex-
pressed as polynomials of second order in the bqk�i�. Hence
S mixing gives rise to highly efficient and otherwise
forbidden tunneling channels by generating new high-
rank anisotropy terms.

In order to assess the impact of these terms on the
tunnel splitting, we applied our theory quantitatively.
While the dipole-dipole interaction [appearing, e.g., in
(9b) through Jujk] can be computed by the point-dipole
approximation, the local CF parameters bqk�i� cannot be
determined ab initio reliably. Therefore, by numerically
inverting the second-order functions CQ

K�fb
q
k�i�g�, we de-

termine the possible sets fbqk�i�gf consistent with INS, i.e.,
such that the values CQ

K�fb
q
k�i�gf� for K � 4 coincide with

those determined by INS (within experimental error
bars). Even by neglecting all bqk�i� with q � 0; 2; 4 (i.e.,
those not contributing to H1) and by enforcing on the
fbqk�i�g the approximate D2 molecular symmetry of Fe8
[18], there are still more unknown parameters than con-
straints, and we find therefore that there are infinitely
207205-3
many sets compatible with INS. For these sets, the dis-
tribution of the calculated values of the tunnel splitting 

is shown in Fig. 2(a) by a histogram of the log increments
log�
=
0�. Here the local CF parameters bqk�i� vary on a
grid bounded by jbq2�i�j< 8 K, jbq4�i�j< 0:4 K. This
choice is based on two considerations: (i) the experimen-
tal values of C0

2 and C2
2 set only a lower bound jbq2�i�j *

1 K. Local second-order parameters of the order of few K
are reasonable in case of Fe3	 in a low symmetry envi-
ronment [19]. (ii) Typical ratios of fourth- to second-
order CF parameters range (in modulus) between 0.01
and 0.1. Figure 2(a) shows that S mixing plays a crucial
role since typically it enhances 
 by several orders of
magnitude. Figure 2(b) reports the result of the same
calculation when the grid bounds are restricted to
jbq2�i�j< 4 K, jbq4�i�j< 0:04 K. Even with this more re-
strictive choice, the effect of S mixing remains huge. The
measured value of 
 is indicated by an arrow and falls
well inside the distribution.

It remains to be proven that besides 
�Bz � 0; By � 0�,
also the measured oscillations of 
�Bz � 0; By� and the
behavior of the AC gaps 
ex�Bz � BAC; By� between ex-
cited states are reproducible. The aim of this Letter is not
to perform a best fit of the observed oscillations of the
tunnel splittings, but to prove that S mixing eliminates
the inconsistency between spectroscopic and Landau-
Zener measurements. Therefore, we limit Eq. (6) to values
207205-3



FIG. 3 (color online). Top: Measured tunnel splitting as a
function of an applied transverse magnetic field By with Bz �
0 (n � 0), and AC gaps involving the excited states j � 10i and
j10� ni (n � 1,2) with Bz � BAC � n� 0:22 T (n � 1; 2) [3].
Bottom: The same quantities calculated with the Hamiltonian
(7) and the CQ

K parameters given in the text.
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of K � 6 in order to find, among the infinite possible
parameter sets consistent with INS, a set involving as few
high-rank terms as possible and reproducing the AC gaps
behavior satisfactorily . The new terms in Eq. (7) (for-
bidden in the strong-exchange limit) with significative
influence on 
 are then C4

6 and C6
6.

As a first step, we fixed CQ
K for K � 4 to the values

determined by neutron spectroscopy [reported below
Eq. (3)], and we chose values of C4

6 and C6
6 that reproduce

the behavior of 
 satisfactorily. With C4
6 ��1:8�

10�7 K and C6
6 ��1:15� 10�7 K, 
 calculated at zero

applied field is �1:1� 10�7 K, to be compared with the
value �0:4� 10�10 K obtained when C4

6 � 0 and C6
6 �

0. Moreover, the measured oscillations of 
 as a function
of the transverse field By are well reproduced, as well as
the AC gaps involving the excited states j�10i and
j10� ni (n � 1; 2) (see Fig. 3). The behavior of 
 as a
function of the transverse field modulus for nonzero azi-
muthal angles & between the applied field and the y axis
is also in good agreement with measurements [3].

As a second step, we checked that the addition of these
sixth-order terms does not affect the INS cross section
significantly. In fact, the recalculated cross section is
indistinguishable from that calculated in [7] and reported
in Fig. 1, apart from an irrelevant shift (by �20 �eV) of
the shoulder at 0.16 meV.

Values of C4
6 and C6

6 of the order and sign of those given
above are realistic in Fe8. For example, the insets in
207205-4
Figs. 2(a) and 2(b) show the distribution P�C6
6� of values

of C6
6 calculated on the same grids as described above. We

stress that our choice of high-rank parameters is merely
the simplest possibility. There are many different sets also
involving the other high-rank terms, which would be
consistent with experimental data. Although a unique
determination of the CQ

Ks is not possible, the important
point is that the addition of high-rank terms, which is
allowed only if S mixing is considered, is essential to
describe consistently relaxation and spectroscopic data.

In conclusion, we have shown that the discrepancy
(more than 3 orders of magnitude in the tunnel splitting)
between spectroscopy and relaxation measurements in
Fe8 can be resolved if S mixing is taken into account.
Even a small degree of S mixing has huge influence in the
tunneling dynamics since it opens highly efficient tunnel
channels through otherwise forbidden high-rank anisot-
ropy terms. The degree of S mixing is strongly influenced
by the topology of the molecule. Therefore, in addition
to the height of the anisotropy barrier, the cluster topol-
ogy must also be taken into account in designing new
nanomagnets.
[1] R. Sessoli et al., Nature (London) 365, 141 (1993);
D. Gatteschi et al., Science 265, 1054 (1994).

[2] J. R. Friedman et al., Phys. Rev. Lett. 76, 3830 (1996);
L. Thomas et al., Nature (London) 383, 145 (1996).

[3] W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999).
[4] N.V. Prokof’ev and P. C. E. Stamp, Phys. Rev. Lett. 80,

5794 (1998).
[5] N. A. Sinitsyn and N.V. Prokof’ev, Phys. Rev. B 67,

134403 (2003).
[6] M. N. Leuenberger and D. Loss, Phys. Rev. B 61, 12200

(2000).
[7] R. Caciuffo et al., Phys. Rev. Lett. 81, 4744 (1998).
[8] G. Amoretti et al., Phys. Rev. B 62, 3022 (2000).
[9] A. Mukhin et al., Phys. Rev. B 63, 214411 (2001).

[10] S. Hill et al., Phys. Rev. B 65, 224410 (2002).
[11] E. Liviotti et al., J. Chem. Phys. 117, 3361 (2002).
[12] S. Carretta et al., Eur. Phys. J. B 36, 169 (2003).
[13] A. Abragam and B. Bleaney, Electron Paramagnetic

Resonance of Transition Ions (Clarendon Press, Oxford,
1970).

[14] A. L. Barra et al., Chem. Eur. J. 6, 1608 (2000).
[15] Other second- and fourth-order terms are expected to be

negligibly small because of the approximate D2 symme-
try of the molecule.

[16] E. Rastelli and A. Tassi, Phys. Rev. B 65, 092413 (2002).
[17] J. J. Borrás-Almenar et al., Inorg. Chem. 38, 6081 (1999).
[18] bq

k�1� � bqk�2�, bqk�3� � bqk�4�, and bqk�5� � bqk�6� �
bq
k�7� � bqk�8�, with q � 0; 2; 4 (indices are defined in

the inset of Fig. 1). To further reduce the number of free
parameters, we assumed b44�1� � b44�3�.

[19] See, e.g., E. Siegel and K. A. Müller, Phys. Rev. B 19, 109
(1979).
207205-4


