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Suppression of Superconductivity in Granular Metals
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We investigate the suppression of the superconducting transition temperature due to Coulomb
repulsion in granular metallic systems at large tunneling conductance between the grains, gT � 1.
We find the correction to the superconducting transition temperature for 3D granular samples and films.
We demonstrate that, depending on the parameters of superconducting grains, the corresponding
granular samples can be divided into two groups: (i) the granular samples that belong to the first
group may have only insulating or superconducting states at zero temperature depending on the bare
intergranular tunneling conductance gT , while (ii) the granular samples that belong to the second group
in addition have an intermediate metallic phase where superconductivity is suppressed while the effects
of the Coulomb blockade are not yet strong.
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in either insulating or superconducting state at zero tem-
perature and (ii) materials that can, in addition, exhibit an

Presenting our final result for the suppression of the
superconducting transition temperature we distinguish
A great deal of current experimental and theoretical
research in mesoscopic physics focuses on properties of
inhomogeneous granular superconductors [1–4]. The in-
terest is motivated not only by their unusual properties
such as negative magnetoresistance [5], but, even to a
higher extent, by the fact that they represent an exem-
plary disordered electronic system with experimentally
accessible tunable parameters. A specific feature of
granular metallic materials is the important role of the
Coulomb interaction that strongly affects their behavior.
The interplay between the Coulomb interaction effects
and disorder was shown to suppress an electron transport
in granular metals [6–8]; the fundamental question that
remains open is how the Coulomb repulsion affects the
superconducting properties of granular metals and, in
particular, the superconducting transition temperature.

Coulomb interactions decrease the critical tempera-
ture; this effect is amplified significantly in the presence
of disorder and becomes especially pronounced in lower
dimensions. For example, in 2D (disordered) supercon-
ducting films the effect of Coulomb repulsions is known
to noticeably decrease the critical temperature [9–12].
The mechanism of suppression of the transition tempera-
ture can be understood as a result of the renormalization
of the electron interaction in the Cooper channel by the
Coulomb repulsion in the presence of scattering by impu-
rities [13]. Since in granular samples both disorder and
the strong Coulomb repulsion effects are present, one
expects that the similar mechanism governs the reduction
of the superconducting critical temperate and becomes
even more pronounced for granular superconductors.

In this Letter we investigate the influence of Coulomb
repulsion on the superconducting transition temperature
of granular metals and demonstrate that, depending on
the parameters of the grains, granular materials can be
divided into two groups: (i) materials that may be found
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intermediate metallic state. The parameter that governs
the corresponding behavior is the tunneling conductance
gT . The transport properties of granular metals were
recently extensively studied in Refs. [6–8]. It was shown
that for 3D samples there is a critical value of the bare
tunneling conductance [8]

gCT � �1=6�� ln�EC=��; (1)

where EC is the Coulomb energy and � is the mean level
spacing in a single grain, that allows one to classify
granular samples by their transport properties: samples
with gT < gCT are insulators at zero temperature while
samples with gT > gCT are metals. We show that, in order
to classify 3D superconducting granular samples with
respect to their possible ground state at zero temperature,
an additional characteristic conductance g�T should be
introduced:

g�T �
A
�
ln2�EC=T0

c �; (2)

where T0
c is the superconducting critical temperature of a

single grain and A is the numerical coefficient defined
below. We demonstrate that granular superconductors can
be conveniently classified depending on the relation be-
tween gCT and g�T into two groups: (i) Group A: Granular
samples with g�T < gCT may have only two phases at zero
temperature depending on the tunneling conductance gT:
They are either superconductors, if gT > g�T; or insula-
tors, if gT < g�T . (ii) Group B: Samples with g�T > gCT can
be found in three phases. They are superconductors if
gT > g�T , insulators if gT < gCT , or metals in the inter-
mediate region g�T > gT > gCT .

Thus, in the latter case there exists an intermediate
metallic region g�T > gT > gCT where the superconductiv-
ity is suppressed by the Coulomb interaction while effects
of Coulomb blockade are not yet strong.
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the high temperature, T0
c > gT�, and low temperature,

T0
c < gT�, regimes: For 3D systems the suppression of the

transition temperature is given by

�Tc
T0
c

� �

(
A
�gT

ln2 gTEC
T0
c
; T0

c > gT�
A
�gT

�ln2 gTEC
T0
c
� 1

2 ln
2 gT�
T0
c
	; T0

c < gT�;
(3a)

while for granular films we obtain

�Tc
T0
c

� �

(
1

6�2gT
ln3 gTECT0

c
; T0

c > gT�
1

6�2gT
�ln3 gTEC

T0
c
� 1

4 ln
3 gT�
T0
c
	; T0

c < gT�:
(3b)

Here A � gTa3
R
d3q=�2��3"�1

q � 0:253 is the dimen-
sionless constant where "q � 2gT

P
a�1� cosqa� with

fag being the lattice vectors. Equations (3a) and (3b)
hold at temperatures T0

c � Tc � T0
c .

Turning to the discussion of the results [(3a) and (3b)],
we note that the existence of two qualitatively different
temperature regimes (T > gT� and T < gT� ) is not
surprising in view of the results for corrections to con-
ductivity obtained in Ref. [8], where it was shown that the
temperature dependence of the conductivity at T < gT� is
dominated by the contribution from coherent electron
motion at large distances, while at T > gT� the conduc-
tivity behavior is controlled by the scales of the order of
the grain size. From Eq. (3a) one can see that the loga-
rithmic corrections appear even in the 3D case; this
property can serve as a specific characteristic of granular
metals. In the high temperature regime T > gT� similar
logarithmic corrections (with the same argument but
different powers) were found in the corrections to the
conductivity and density of states [7,8]. Yet, the result for
the critical temperature suppression in the high tempera-
ture regime depends on the dimensionality and is not
universal, contrary to the logarithmic corrections to con-
ductivity found in the same regime in Refs. [7,8]. We
see that in granular superconducting films the suppression
of the transition temperature is much stronger than that in
3D granular samples. The extra logarithm power in two
dimensions is due to the contribution of low momenta,
q� a�1.

Our classification for 3D granular superconductors can
be derived from the following arguments: The critical
conductance g�T is defined by the condition that the cor-
rection (3a) becomes of the order of unity at gT � g�T:
Considering first the case where g�T < gCT , we see that the
system should be a superconductor at gT > g�T , since the
conductance renormalization due to the effect of
Coulomb interaction �gT taken at the temperature T 

T0
c is smaller than gT for all gT larger than g�T . Indeed,

�gT � �1=6�� ln�gTEC=T
0
c �< g�T . On the other hand, if

gT < g�T , then the interaction in the Cooper channel is
completely suppressed and the system becomes an insu-
lator at zero temperature because gT < gCT . Thus in the
case g�T < gCT , depending on the value of conductance gT ,
one observes either insulating, at gT < g�T , or supercon-
ducting, at gT > g�T , phases at zero temperature. The
207002-2
second case, where g�T > gCT , is qualitatively different
due to the appearance of the intermediate metallic phase:
In the region gT > g�T the system is a superconductor, in
the region g�T > gT > gCT the interaction in the Cooper
channel is completely suppressed, and the system is me-
tallic since gT > gCT , and finally, in the region gT < gCT
the system becomes an insulator.

Now we turn to the quantitative description of our
model and derivation of Eq. (3a): We consider a d-
dimensional array of superconducting grains in the me-
tallic state. The motion of electrons inside the grains is
diffusive and they can tunnel between grains. We assume
that in the absence of the Coulomb interaction, the sample
would have been a good metal at T > Tc.

The system of weakly coupled superconducting grains
is described by the Hamiltonian

ĤH � ĤH0 � ĤHc � ĤHt: (4a)

The term ĤH0 in Eq. (4a) describes isolated disordered
grains with an electron-phonon interaction

ĤH 0 �
X
i;k

�i;ka
y
i;kai;k � �

X
i;k;k0

ayi;ka
y
i;�kai;�k0ai;k0 � ĤHimp;

(4b)

where i stands for the number of the grains, k � �k; "�,
�k � ��k; #�, � > 0 is the interaction constant, ayi;k�ai;k�
are the creation (annihilation) operators for an electron in
the state k of the ith grain, and ĤHimp describes elastic
interaction of electrons with impurities. The term ĤHc in
Eq. (4a) describes the Coulomb repulsion inside and be-
tween the grains and is given by

ĤH c �
e2

2

X
ij

n̂ni C�1
ij n̂nj; (4c)

where Cij is the capacitance matrix and n̂ni is the operator
of the electron number in the ith grain. The last term in
the right-hand side of Eq. (4a) is the tunneling
Hamiltonian

ĤH t �
X
ij;p;q

tija
y
i;paj;q; (4d)

where tij is the tunneling matrix element corresponding
to the points of contact of the ith and jth grains.

The transition temperature, Tc, of the granular metals
is determined from the pole of the superconducting
propagator [14]. As in the case with homogeneous super-
conducting metals, in the absence of the electron-electron
repulsion the transition temperature of granular metals is
independent of disorder.

To study the suppression of the transition temperature
in granular metals we take into account the electron-
electron repulsion in the Cooper channel. The first order
correction �� to the Cooperon channel coupling constant
� due to electron-electron repulsion is given by the dia-
grams in Figs. 1 and 2. These diagrams contain essen-
tially the averaged one-particle Green functions (solid
lines), effective screened Coulomb propagators (wavy
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FIG. 2. Diagrams describing the first order vertex correc-
tions, ��2, to the Cooperon channel coupling constant � of
granular metals due to the electron-electron repulsion. All
notations are the same as in Fig. 1. The diagrams (b)–(d)
should be taken with an additional factor of 2. After that the
final result for the sum of the diagrams (a)–(d) is given by
Eq. (10).
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f)d)
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e)

j ji

j j

FIG. 1. Diagrams describing the first order self-energy cor-
rections, ��1, to the Cooperon channel coupling constant � of
granular metals due to the electron-electron repulsion. The
solid lines denote the propagator of electrons, the wavy lines
describe screened Coulomb interaction, and the dashed lines
describe the elastic interaction of electrons with impurities. The
shaded rectangles and triangles denote the renormalized
Cooperon [see Eq. (5)] and the impurity vertex of granular
metals, respectively. The indices i and j stand for the number of
the grains. The tunneling vertices are described by the circles.
All diagrams should be taken with a factor of 2. The final result
for the sum of the diagrams (a) —(f) is given by Eq. (7).
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lines), and dashed lines that describe the elastic interac-
tion of electrons with impurities. In the regime under
consideration all characteristic energies are less than
Thouless energy ET � D=a2, where D is the diffusion
coefficient of a single grain. This allows us to use the zero
dimensional approximation for a single grain diffusion
and Cooperon propagators. The electron hopping between
the grains can be included using the diagrammatic tech-
nique developed in Refs. [5,6]. The complete expression
for the renormalized Cooperon of granular metals
(shaded rectangle in Figs. 1 and 2) has the following
form:

C�!n;q� � �2���2��1�j!nj � "q���1; (5)

where q is the quasimomentum, !n � 2�Tn is the bo-
sonic Matsubara frequency, and � is the density of states
on the Fermi surface. The parameter "q in the right-hand
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side of Eq. (5) appears due to the electron tunneling from
grain to grain, it was defined below Eq. (3b).

Deriving the analytical result for the diagrams in
Figs. 1 and 2 it is important to take into account the
fact that the single electron propagator itself gets renor-
malized due to electron hopping. Tunneling processes
give rise to an additional term to the self-energy part of
the single electron propagator (see Fig. 3),

��1 � ��1
0 � 2dgT�; (6)

where �0 is the unrenormalized electron mean free time
and gT � 2�t2�2 is the dimensionless tunneling conduc-
tance. Although the second term on the right-hand side of
Eq. (6) is much smaller than the first one, it is important
to keep it because the leading order contribution in ��1

0 to
the coupling constant � cancels (see Eqs. (7) and (10)
below).

We consider the contributions from diagrams in Figs. 1
and 2 separately. Using the result of Eq. (6) it is straight-
forward to check that the sum of the diagrams (a)–(f) in
Fig. 1 results in the following correction, ��1, to the
Cooperon channel coupling constant:
��1

�
� ��T2

X
q

" X
"n�"n��n�<0

�
2V��n;q�

j"nj �j�nj � "q��2
�

V��n;q�
"2n�j�nj � "q��

�
�

X
"n�"n��n�>0

V��n;q�
"2n�j2"n ��nj � "q��

#
: (7)
Here the summation is going over the quasimomentum,
q, and over the fermionic, "n � �T�2n� 1�, and bosonic,
�n � 2�Tn, Matsubara frequencies. The propagator of
the screened electron-electron interaction, V��n;q�, in
Eq. (7) is given by the expression

V��n;q� �
2EC�q��j�nj � "q��

4"qEC�q� � j�nj
: (8)

The parameter "q in Eqs. (7) and (8) was defined below
Eq. (3b). The charging energy EC�q� � e2=2C�q� in
Eq. (8) is expressed in terms of the Fourier transform of
the capacitance matrix C�q� which has the following
asymptotic form:

C�1�q� �
2

aD

	
�=q; D � 2
2�=q2; D � 3:

(9)

To obtain the total correction �� to the Cooperon
channel coupling constant � due to electron-electron
interaction the diagrams in Fig. 2 that represent vertex
207002-3
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corrections should be taken into account. These diagrams result in the following contribution:

��2

�
� ��T2

X
q

" X
"n�"n��n�<0

V��n;q�
j"njj"n ��nj�j�nj � "q��

�
X

"n�"n��n�>0

V��n;q�
j"njj"n ��nj�j2"n ��nj � "q��

#
: (10)
Using Eqs. (8) and (9) and summing over the frequencies
"n, �n and quasimomentum q in Eqs. (7) and (10) with
the logarithmic accuracy we obtain the final result (3a)
and (3b) for the superconducting transition temperature
in granular metals.

The above consideration was based on the so-called
‘‘fermionic’’ mechanism of the suppression of supercon-
ductivity that describes the renormalization of the inter-
action coupling constant in the Cooper channel due to the
simultaneous presence of the Coulomb interaction and
disorder. The complementary, ‘‘bosonic,’’ mechanism is
usually studied by virtue of the effective action approach
introduced in Refs. [15,16]. The effective action approach
assumes that the paring interaction does always exist, but
that the superconducting coherence may or may not de-
velop. Note that the effective action approach completely
misses the fermionic mechanism contribution. Indeed,
the main building block of the fermionic description,
the Cooperon, corresponds to the infinite series in the
tunneling matrix elements, while the effective action is
derived in the lowest order in the tunneling matrixes
element. This is why the fermionic approach predicts
the zero temperature metallic phase, while to detect it
within the framework of the effective action approach
[17] is hard, if not impossible.

The metallic phase that we predict may be observed
experimentally in granular superconductors composed of
metallic grains of controllable size that satisfy the con-
dition g�T > gCT : As an example we present one of the
possible sets of parameters: EC � 100 K, T0

c � 10 K, and
� � 1 K, that according to Eqs. (1) and (2) results in the
following critical conductances: gCT � 0:244 and g�T �
0:427. According to our theory the metallic conductivity
behavior should be observed down to zero temperatures
for those samples that are characterized by the tunneling
conductances laying within the interval g�T > gT > gCT :

In conclusion, we have described the suppression of
superconducting transition temperature due to Coulomb
repulsion in granular metals.We have found the correction
a) b)

FIG. 3. Diagrams describing self-energy corrections to the
single electron propagator due to (a) elastic interaction of
electrons with impurities and (b) electron hopping. The solid
lines denote the bare propagator of electrons and the dashed
line describes the elastic interaction of electrons with impuri-
ties. The tunneling vertices are described by the circles.
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to the transition temperature for 3D granular samples and
films at large tunneling conductance between the grains.
We have demonstrated that the suppression of supercon-
ductivity in 3D samples can be characterized by the
critical value of the conductance g�T introduced in
Eq. (2) such that for samples with gT < g�T the super-
conductivity is suppressed. Taking into account effects
of Coulomb blockade of conductivity that become essen-
tial for samples with gT < gCT , where the critical value gCT
is given by Eq. (1), we have introduced the classification
of 3D granular samples composed from superconducting
grains according to the possibility of having insulating,
metallic, or superconducting phases at zero temperature.
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