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Positive Cross Correlations in a Three-Terminal Quantum Dot with Ferromagnetic Contacts
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We study current fluctuations in an interacting three-terminal quantum dot with ferromagnetic leads.
For appropriately polarized contacts, the transport through the dot is governed by dynamical spin
blockade, i.e., a spin-dependent bunching of tunneling events not present in the paramagnetic case. This
leads, for instance, to positive zero-frequency cross correlations of the currents in the output leads even
in the absence of spin accumulation on the dot. We include the influence of spin-flip scattering and
identify favorable conditions for the experimental observation of this effect with respect to polarization
of the contacts and tunneling rates.
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sibility of positive cross correlations in the absence of ’
Quantum fluctuations of current in mesoscopic devices
have attracted considerable attention in past years (for
reviews, see Refs. [1,2]). It has been shown that the
statistics of noninteracting fermions leads to a suppres-
sion of noise below the classical Poisson value [3–5] and
to negative cross correlations in multiterminal structures
[6]. This was recently confirmed experimentally in a
Hanbury Brown–Twiss setup [7]. The question of the
sign of cross correlations has triggered a lot of activity
[8], and different mechanisms to obtain positive cross
correlations in electronic systems have been proposed.
Employing a superconductor as a source, positive cross
correlations have been predicted for several setups [9].
This is because a superconducting source injects highly
correlated electron pairs. Screening currents due to long-
range Coulomb interactions lead to positive correlations
in the finite-frequency voltage noise measured at two
capacitors coupled to a coherent conductor [8,10]. Last,
positive cross correlations can occur due to the correlated
injection of electrons by a voltage probe [11], or due to
correlated excitations in a Luttinger liquid [12].

Below, we will be interested in noise correlations in a
quantum dot. This problem was addressed theoretically in
the sequential-tunneling limit [13] and in the cotunneling
regime [14]. Noise measurements [15] were in agreement
with the Coulomb-blockade picture [13]. Cross correla-
tions between particle currents in a paramagnetic multi-
terminal quantum dot were studied in Ref. [16], and they
were found to be negative. The noise of a two-terminal
quantum dot with ferromagnetic contacts was studied in
the sequential-tunneling limit [17,18], and, interestingly,
a super-Poissonian Fano factor was found.

In this Letter, we consider an interacting three-
terminal quantum dot with ferromagnetic leads. The dot
is operated as a beam splitter: One contact acts as source
and the other two as drains. Our main finding is that
sufficiently polarized contacts can lead to a dynamical
spin blockade on the dot, i.e., a spin-dependent bunching
of tunneling events not present in the paramagnetic case.
A striking consequence of this spin blockade is the pos-
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correlated injection. Surprisingly, spin accumulation on
the dot is not necessary to observe this effect. Further-
more, the sign of cross correlations can be switched by
reversing the magnetization of one contact. The effect is
robust against spin flips on the dot as long as the spin-flip
scattering rate is less than the tunneling rates.

The system we have in mind is a quantum dot con-
nected to three ferromagnetic leads i 2 f1; 2; 3g, through
tunnel junctions with capacitances Ci and net spin-inde-
pendent tunneling rates �i (inset of Fig. 1). A voltage bias
V is applied to leads 1 and 3; lead 2 is connected to
ground. At voltages and temperatures much lower than
the intrinsic level spacing and the charging energy e2=2C
of the dot (C �

P
iCi), only one energy level of

the dot located at E0 needs to be taken into account. In
this situation, the dot can be either empty or occupied
with one electron with spin 	 2 f"; #g. In the following,
we will measure energies from the Fermi level EF � 0 of
lead 2.

The collinear magnetic polarizations Pj of the leads
are taken into account by using spin-dependent tunneling
rates �j	 � �j�1� 	Pj	, where 	 � 
1 labels the elec-
tron spin (up/down). In a simple model, the spin depen-
dence is a consequence of the different densities of states
for majority and minority electrons [19]. The rate for
an electron to tunnel on/off the dot (
 � 
1) through
junction j is then given by �
j	 � �j	=f1� exp�
�E0 �
eVj	=kBT
g, where V1 � V3 � �C2V=C, V2 �
�C1 � C3	V=C. On the dot, there can be spin-flip scatter-
ing, for instance, due to spin-orbit coupling or magnetic
impurities. Here, we will assume that the on-site energy
on the dot does not depend on spin. Hence, due to the
detailed-balance rule, the spin-flip scattering rate �sf
does not depend on spin.

In the sequential-tunneling limit 	h�j	 � kBT, elec-
tronic transport through the dot can be described by the
master equation [13,18]:

d
dt
p �t	 �

X
M ;’p’�t	; (1)
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FIG. 1. Current-voltage characteristic of a quantum dot con-
nected to three ferromagnetic leads i 2 f1; 2; 3g, with respec-
tive polarizations Pi, through tunnel junctions with
capacitances Ci and net tunneling rates �i (circuit shown in
the inset). A bias voltage V is applied to leads 1 and 3; lead 2 is
connected to ground. The average current I2 through lead 2 is
shown as a function of voltage, for C1 � C2 � C3, �1 �
�2=50 � �3=10, kBT=E0 � 0:1, and different values of lead
polarizations. The current is plotted in units of e�tot �
e�2��1 � �3	=��1 � �2 � �3	; the voltage in units of V0 �
E0C=�C1 � C3	e; E0 is the position of the dot level. For
P1 � P2 � P3, I2 coincides with the paramagnetic case (dia-
monds). In the other cases, the high-voltage limit of I2 can be
larger or smaller than the paramagnetic value, depending on
the lead polarizations. For P1 � �P2 � P3 � 0:6 (circles), the
effect of spin-flip scattering is shown. Spin-flip scattering
makes the I2 � V curve tend to the paramagnetic one.
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where p �t	,  2 f"; #; 0g, is the instantaneous occupation
probability of state  at time t, and

M̂M �

2
4
���

" � �sf �sf ��
"

�sf ���
# � �sf ��

#

��
" ��

# ���
" � ��

#

3
5 (2)

depends on the total rates �
	 �
P
j�



j	 and �	 �

P
j�j	.

The stationary occupation probabilities 	pp are

	pp	 �
��
	�

�
�	 � �sf��

�
	 � ��

�		

�	��	 � ��
	�

�
�	 � �sf

P
	0

���
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and 	pp0 � 1� 	pp" � 	pp#. The average value hIji of the tun-
neling current Ij�t	 is hIji � e

P

;	
�



j	 	ppA�	;�
	, where

A�	; 
	 is the state of the dot after the tunneling of an
electron with spin	 in the direction 
; i.e., A�	;�1	 � 0,
A�	;�1	 � 	.

In the following, we consider E0 > 0 (for E0 < 0, see
[20]). The voltage V will always be assumed to be posi-
tive, such that it is energetically more favorable for elec-
trons to go from the input lead 2 to the output leads 1 or 3
than in the opposite direction. The typical voltage depen-
dence of I2 � hI2i is shown in Fig. 1. The total current I2
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is exponentially suppressed at low voltages, increases
around a voltage V0 � E0C=�C1 � C3	e, and saturates at
higher voltages. The width of the increase is determined
by kBT=e. The high-voltage limit of I2 depends on the
polarizations Pi and rates �i but not on the capacitances
Ci. For a sample with magnetic contacts, this limit can be
higher or lower than that of the paramagnetic case, de-
pending on the parameters considered. In the high-
voltage limit, I2�P1; P2; P3	 � I2�0; 0; 0	 � 2e�cPouthSi,
where Pout � �P1�1 � P3�3	=��1 � �3	 is the net output
lead polarization, hSi �  �P2 � Pout	 is the average spin
accumulation on the dot [21], and �c � �2��1 �
�3	=��1 � 2�2 � �3	. Here,  is a positive function of
the polarizations, the tunneling, and scattering rates,
which tends to 0 at large �sf. Having a saturation current
different from the paramagnetic case requires Pout � 0
and hSi � 0. Spin-flip scattering modifies the I2 � V
curve once �sf is of the order of the tunneling rates. It
suppresses spin accumulation and makes the I2 � V curve
tend to the paramagnetic one.

The power spectrum of tunneling current correla-
tions in leads i and j is defined as Sij�!	 �
2
R
�1
�1 dt exp�i!t	h�Ii�t	�Ij�0	i, where �Ii�t	 �

Ii�t	 � hIii. The terms hIi�t	Ij�0	i can be written as a
function of the conditional probabilities Pc ;’�t	 which
are the occupation probabilities of the state  at time t
if at t � 0 the state was ’, and which are zero for t < 0.
Solving Eq. (1) with the initial condition Pc ;’�t � 0	 �
" ;’ leads to Pc ;’�t	. The Fourier transform of Pc ;’�t	 is
P̂Pc�!	 �

R
1
0 dt exp�i!t	P̂P

c�t	 � ��i!� M̂M	�1. The ei-
genvalues of the matrix M̂M thus govern the frequency
dependence of P̂Pc�!	. The nonzero eigenvalues are #
 �
1
2 ��2�sf � �" � �# 
 �	, with �2 � 4�2

sf � ��" �
�#	

2 � 4�sf���
" � ��

# 	 � 4��
" �

�
# . This eventually leads

to Sij�!	 � "ijS
Sch
j �

P
	;	0Sci;	;j;	0 �!	, where SSchj �

2e2
P

;	�



j	 	ppA��
;		 is the Schottky noise produced by

tunneling through junction j, and

Sci;	;j;	0 �!	

2e2
�
X

;
0
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0

i	GA�	;�
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	�!	�
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0

j	0GA�	0;�
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:

(4)

Here, we defined G ;’�!	 � Pc ;’�!	 � 	pp =i!. For fre-
quencies larger than the cutoff frequencies #
, the spec-
trum Sij�!	 tends to the uncorrelated spectrum "ijS

Sch
j . In

the following, we will consider mainly the zero-
frequency limit of Sij�!	, because the frequencies #
 �
�i are difficult to access in experiment. Note that at zero
frequency the contribution of the screening currents en-
suring electroneutrality of the capacitors after a tunneling
event [8] is zero; i.e., Sij � Sij�0	 is the signal measured
in practice [22].

Figures 2 and 3 show the Fano factor F � S22=2eI2 and
the cross correlations S13 as a function of V for �sf � 0.
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Well below V0, the current is due to thermally activated
tunneling and the noise is Poissonian. At very low volt-
age, eV � kBT, the crossover to thermal noise is ob-
served. Around V � V0, F and S13 show a step or a dip.
The high-voltage limit strongly depends on tunneling
rates and polarizations. In the paramagnetic case, the
limit of F lies in the interval �1=2; 1
, and that of
S13=2eI2 in ��1=8; 0
. In the ferromagnetic case, the
high-voltage limit of F can be either sub-Poissonian or
super-Poissonian, as already pointed out in the two-
terminal case [17]. Spin accumulation is not a necessary
condition for having a super-Poissonian Fano factor, as
can be seen for P1 � P2 � P3, where hSi � 0. In this
case, the essential point is that the current can flow
only in short time windows where the dot is not blocked
by a down spin (see the inset of Fig. 2). This dynamical
spin blockade leads to a bunching of tunneling events, and
explains the super-Poissonian Fano factor.

The cross correlations can be either positive or negative
(see Fig. 3). Note that a super-Poissonian F does not
necessarily imply positive cross correlations, as shown
by the case �P1 � P2 � P3 � 0:6 in Figs. 2 and 3, for
which the cross correlations are even more negative than
in the paramagnetic case. Indeed, relation (4) together
with charge conservation imply that S22 � SSch2 �P
	;	0Sc1;	;3;	0 ��1	 � �3		��1	0 � �3	0 	=�1	�3	0 at V �

V0. Thus, at V � V0, a super-Poissonian F is equivalent
to positive cross correlations only if the two output leads
have identical polarizations. For the case �P1 � P2 �
P3 � 0:6, cross correlations are negative in spite of the
super-Poissonian F because the correlated electrons are
FIG. 2. Fano factor F � S22=2eI2 of lead 2 as a function of
voltage, for the same circuit parameters as in Fig. 1. In all
curves �sf � 0. For P1 � P2 � P3, the Fano factor is different
from that of the paramagnetic case (diamonds) in contrast to
what happens for the average currents. The inset shows the
typical time dependence of the spin on the dot, in the high-
voltage limit V � V0 for the case P1 � P2 � P3 � 0:6.
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mostly up electrons flowing through lead 3. Note that
Re�S13�!	
 can change sign for intermediate frequencies
and vanishes for !� #
 [20].

The effect of spin-flip scattering is shown in the inset
of Fig. 3. Spin-flip scattering influences the cross corre-
lations once �sf is of the order of the tunneling rates. In
the high-�sf limit, cross correlations tend to the para-
magnetic case for any value of the polarizations. Thus,
strong elastic spin-flip scattering suppresses positive cross
correlations, in contrast to what happens with inelastic
scattering in [11]. In practice, experiments with a quan-
tum dot connected to ferromagnetic leads and �sf � �tot

have already been performed [23]. Thus, spin-flip scatter-
ing should not prevent the observation of positive cross
correlations in quantum dots.

Finally, we address the problem of how to choose
parameters that favor the observation of positive cross
correlations. First, finite lead polarizations are necessary
[16] (see the insets of Fig. 4). However, it is possible to get
positive cross correlations even if P2 � 0, provided the
output leads 1,3 of the device are sufficiently polarized
(dashed lines in the insets of Fig. 4). The case where the
three electrodes are polarized in the same direction
seems the most favorable. In the high-voltage limit,
choosing P1 � P2 � P3 and �sf � 0 leads to

S13 �
16e2�1�2

2�3���1 � 2�2 � �3	P2
1 � �1 � �3


��1 � �3	��1 � 2�2 � �3	
3�1� P2

1	
: (5)
FIG. 3. Current cross correlations between leads 1 and 3 as a
function of voltage. The curves are shown for the same circuit
parameters as in Fig. 2. The cross correlations can be positive in
the cases P1 � �P2 � P3 � 0:6 (circles) and P1 � P2 � P3 �
0:6 (squares). Note that the sign of cross correlations can be
reversed by changing the sign of P1. In all curves �sf � 0. The
inset shows the influence of spin-flip scattering on the cross
correlations in the high-voltage limit V � V0. In the paramag-
netic case (diamonds), spin-flip scattering has no effect. In the
limit �sf � �tot, the cross correlations tend to the paramag-
netic value.
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FIG. 4. Influence of the asymmetry between �2 and �1 � �3

on the high-voltage limit of the cross correlations, for P1 �
P2 � P3 � 0:6 (squares) and �P1 � P3 � 0:9, P2 � 0 (hexa-
gons), for �3=�1 � 10 (full symbols) and �3=�1 � 1 (empty
symbols). Large values of �2=��1 � �3	 favor positive cross
correlations. For �P1 � P3 � 0:9, P2 � 0, an asymmetry be-
tween �1 and �3 is also necessary. The vertical dotted line
indicates the ratio �2=��1 � �3	 corresponding to Figs. 1 and 2.
The two insets show the high-voltage limit of the cross corre-
lations as a function of P3, for �1 � �2=50 � �3=10, P1 � P3

(left inset), P1 � �P3 (right inset), and P2 � 0 (dashed lines)
or P2 � 0:6 (full lines). For all curves �sf � 0.
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The asymmetry between the tunneling rates �i has a
strong influence on the cross correlations (see Fig. 4).
Large values of �2=��1 � �3	 favor the observation of
positive cross correlations [see, e.g., Eq. (5)] by decreas-
ing 	pp0. This allows one to extend the domains of positive
cross correlations to smaller values of the polarizations,
which is important because experimental contact mate-
rials are not fully polarized. For �1 � �2=10 � �3, the
polarizations P1 � P2 � P3 � 0:4 typical for Co [24]
lead to positive cross correlations of the order of
S13=e

2�tot ’ 0:08. With �tot ’ 5 GHz, this corresponds
to 10�29 A2 s, a noise level accessible with present
noise-amplification techniques [15].

In conclusion, we have demonstrated that trans-
port through a multiterminal quantum dot with ferro-
magnetic leads is characterized by a new mechanism:
dynamical spin blockade. As one of its consequences,
we predict positive current cross correlations in the drain
contacts without requiring the injection of correlated
electron pairs. We have included spin-flip scattering on
the dot and have shown that the effect persists as long as
the spin-flip rate is less than the tunneling rates to the
leads.
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J. Barnaś and A. Fert, Europhys. Lett. 44, 85
(1998); F. Guinea, Phys. Rev. B 58, 9212 (1998);
H. Imamura et al., ibid. 59, 6017 (1999); A. Brataas
et al., Eur. Phys. J. B 9, 421 (1999); X. H. Wang and
A. Brataas, Phys. Rev. Lett. 83, 5138 (1999).

[22] The total current correlations, including screening
currents, are Stotij �!	 �

P
n;m�"i;n � �Ci=C	
�"j;m �

�Cj=C	
Snm�!	.
[23] M. Deshmukh and D. C. Ralph, Phys. Rev. Lett. 89,

266803 (2002).
[24] M. Soulen et al., Science 282, 85 (1998).
206801-4


