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Capillary Condensation in Liquid-Crystal Colloids
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We study capillary condensation between two spherical particles dispersed in the isotropic phase of a
nematic liquid crystal. Within the Landau—de Gennes theory, we calculate interaction energies due to
the formation of capillary bridges that reproduce experimental observations. Close to the critical point
of the transition line separating the no-bridge from the bridge configuration, fluctuations in the particle
cluster might be described by an effective two-state system. We show that the transition line vanishes for
small particles and that the shape of the interaction potential depends on particle size.
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Liquid crystal colloid dispersions, i.e., the suspension
of particles in an anisotropic fluid such as a nematic
phase, constitute an attractive new type of soft matter
[1]. They give rise to interesting dynamic behavior and to
novel interactions, mediated by topological defects and
elastic distortions in the orientational order. As a result,
prominent structure formation involving chaining [2],
“soft solids” [3], and even ordered structures [4] are
observed. A ‘“‘transparent nematic phase” of suspended
nanoparticles is under debate [5,6], and a numerical
method to simulate several particles in a nematic host
was developed [7]. In other anisotropic host fluids,
such as cholesteric liquid crystals, particle-stabilized de-
fect gels [8] or long-range ordering of nanoparticles [9]
are found.

This Letter is motivated by experiments of Kocevar
and Musevi¢, where the interaction between a flat sub-
strate and a microsphere immersed in a nematic liquid
crystal above the nematic-isotropic phase transition is
measured using an atomic force microscope [10]. By
carefully preparing the bounding surfaces, the authors
could vary the strength of the anchoring of the mesogenic
molecules. For weak anchoring, a Yukawa-type inter-
action due to nematic wetting layers is observed [11]
and well understood within a harmonic approximation
of the Landau—de Gennes free energy [12]. For strong
anchoring, the authors obtain a much stronger and
long-ranged force, which they attribute to capillary con-
densation, i.e., the formation of a bridge of condensed
nematic phase between the substrate and the particle [13].
A first approximate theoretical approach to the experi-
ments is given in [13,14]. This Letter presents a full
description of this novel colloidal interaction by inves-
tigating the interaction potential of two spherical par-
ticles. Since the potential is easily tunable by
temperature and, as we show, its strength and shape
depend on the particle size, it provides a means to control
colloidal ordering both in the bulk and at structured
surfaces [15,16].
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Capillary condensation means a surface-induced shift
of a first-order transition whenever the system under
investigation is restricted to a confining geometry, such
as porous media [17]. Therefore, it is important for phe-
nomena like adhesion and friction. The formation of
capillary bridges between close surfaces has been ob-
served in a variety of systems [18]. Calculations for two
spheres immersed in a simple binary fluid exist [19], and
the observation of flocculation of colloids in simple liquid
mixtures was attributed to capillary condensation [20]. In
liquid crystals, the anchoring of the mesogenic molecules
to the surfaces is not only of technological importance; it
also leads to a variety of wetting and/or surface transi-
tions [21]. Capillary condensation in a slab geometry was
first studied by Sheng [22], and then extended by others
[23]. Here we investigate the formation of capillary
bridges between two spherical particles on the basis of
the Landau—de Gennes theory. We demonstrate how tem-
perature and the size of the particles influence the con-
tinuous or discontinuous formation of the capillary
bridges. Furthermore, we are able to compare directly
to the experiments reported in Refs. [10,13].

To quantify the surface-induced orientational order, we
use a traceless and symmetric second-rank tensor Q,;,
also called an alignment tensor. We perform our analysis
with the help of the Landau—Ginzburg—de Gennes
free energy density [24]: f(Q;)=3ao(T—T%)Q;;0;; —
1000k Qi +5¢(0:;0:)* +5L,(Q;j4)*, where summa-
tion over repeated indices is implied and the symbol , k
means spatial derivative with respect to x;. The first three
terms describe the nematic-isotropic phase transition; a
and ¢ are positive constants, and T* denotes the super-
cooling temperature of the isotropic phase. In the fourth
term we adopt, for simplicity, the one-constant approxi-
mation of the elastic energy, which penalizes any nonuni-
form orientational order. The number of parameters is
reduced by using a rescaled order parameter u;; =
Qii/s [s = b/(3/3¢)] and temperature 7 = 27cay(T —
T*)/b? so that the free energy of the orientational order

© 2004 The American Physical Society 205502-1



VOLUME 92, NUMBER 20

PHYSICAL REVIEW LETTERS

week ending
21 MAY 2004

in the volume around the two spheres becomes

F[Qi;(r)] _ a (1
szé:r = g]d3r<§7-luij:“ij - \/gluijﬂjk/"“kl
1 12
+ Z(Mij,“ij)z + Eg(lu/ij,k)z)-

The lengths are given in terms of the particle radius a
(t = r/a), the unit of the free energy density is Af =
b*/(729¢3), and &, = (27¢L,/b*)"/? is the nematic coher-
ence length at the nematic-isotropic phase transition.
Typical values for the nematic compound 5CB are Af =
0.5 X 103 erg/cm? and &, = 10 nm, and the temperature
interval A7 = 1 corresponds to 1.12 K. A uniaxial order
parameter, u;; = S(n;n; — 8;;/3), where n is the nematic
director and §;; the Kronecker symbol, minimizes the
first three terms of the free energy F[Q,;(r)]. The bulk
nematic-isotropic phase transition from S = 0to S, = /3
occurs at 7, = 1, and 7t = 9/8 is the superheating tem-
perature of the nematic phase. To evaluate the main fea-
tures of capillary condensation between two spheres, we
choose rigid boundary conditions; i.e., at the particle
surfaces we assume a constant uniaxial order parameter
wij = So(#;#; — 8;;/3), where ¥ is a unit vector parallel
to the local surface normal and Sy = 2 is close to S,. Our
choice of rigid boundary conditions is justified by the
experiments of Kocevar et al [10,13], where a strong
anchoring of the liquid-crystal molecules was prepared.
We will demonstrate below that we obtain quantitative
agreement with these experiments. However, by using
rigid anchoring, we will not observe possible prewetting
transitions, which we have studied recently [25].

The capillary condensation between two spherical par-
ticles is investigated by numerically minimizing the free
energy F[Q;;(r)] for various distances to contact d/a,
temperatures 7, and particle radii a. Details of our nu-
merical approach are reported in Ref. [26]; here we just
summarize them. We employ bispherical coordinates that
have several advantages. First, they provide a grid where
the infinite space around the two spheres is mapped on
finite coordinate intervals. Second, between the particles,
where a capillary bridge forms and therefore high reso-
lution is required, the grid lines are denser. Third, the
surfaces of the spheres correspond to coordinate lines so
that the implementation of the boundary conditions be-
comes trivial. Under the reasonable assumption of rota-
tional symmetry around the particle-particle axis, we
evaluate the Euler-Lagrange equations from the variation
of the free energy F[Q;;(r)], discretize them, and use the
relaxational dynamics of model A in the Hohenberg-
Halperin notation to solve them. The discretized free
energy is evaluated numerically with the help of the
trapezoidal rule. To calculate the interaction energy of
the particles with sufficient accuracy, we had to take
256 X 128 grid points in the (£, #) space (see Ref. [26]).
Therefore, extensive numerical calculations were re-
quired. Furthermore, since the density of the bispherical
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grid lines diverges in the space between the particles
when the distance of contact d approaches zero, we could
not calculate the interaction energy for d — 0.

Two orientational configurations are identified. For
large distances to contact d, each particle is surrounded
by a surface-induced nematic wetting layer. We call this
the no-bridge configuration. At sufficiently small d, a
bridge of condensed nematic phase develops, as illus-
trated, e.g., in the insets of Fig. 2, where we identify the
orientational order by plotting a grey-scale picture of
Mijmij- In the uniaxial case, w;;u;; is proportional to
the square of the Maier-Saupe parameter S, which mea-
sures how well the molecules are aligned. Investigations
of the biaxiality show that the order parameter stays
essentially uniaxial in regions of noticeable orientational
order. In Fig. 1, we plot the interaction energy F(d) —
F(d — o) as a function of the reduced distance d/a for a
reduced particle radius a/&, = 35. At the bulk phase
transition temperature 7. = 1, we notice a clear hystere-
sis. Reducing the distance d/a from large values, the two-
particle system stays in the no-bridge configuration with
an interaction-energy close to zero. At d/a = 0.6 the
bridge configuration becomes metastable, and at d/a =
0.53 there should be a first-order transition to the bridge
configuration. However, due to activation barriers much
larger than the thermal energy, we expect the system to
stay in the no-bridge configuration until d/a = 0.4, where
it loses its metastability. On the other hand, pulling two
spheres apart, the bridge should stay until d/a = 0.6. In
the bridge configuration, the interaction energy is ap-
proximately linear in d/a, which is in good agreement
with measurements of a nearly constant interaction force
in Ref. [10]. Note that such a force profile, although with a
larger hysteresis, is used to model the viscoelastic behav-
ior of wet granular media, where a liquid bridge forms
when the grains come close to each other [27]. For &, =
10 nm, i.e., a particle radius of 350 nm, the extrapolated
interaction energy at zero distance amounts to 600kgT.
The value agrees quantitatively with Fig. 8 in Ref. [10],
when in the evaluation of the force per particle radius we
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FIG. 1. Interaction energy in units of Afa®¢, as a function of
the reduced distance to contact d/a. The reduced particle
radius is a/&, = 35 and temperature serves as parameter.
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FIG. 2. Inar,d diagram for a reduced particle radius a/ ¢, =
35, the first-order transition line between the no-bridge and the
bridge configuration ends in a critical point. The insets depict
the capillary bridges at different locations on and beyond the
transition line.

take a = 350 nm. This suggests that our assumption of
rigid anchoring is reasonable.

With increasing temperature, the interaction-energy
profiles in Fig. 1 become steeper, which means larger
force in accordance with experiments (see Ref. [13]).
In addition, the width of the hysteresis decreases until
the interaction profile becomes smooth. Figure 2 presents
the first-order transition line between the no-bridge
and the bridge configuration in a temperature-distance
diagram [28]. It ends in a critical point, which we deter-
mined by extrapolating the width of the hysteresis to zero.
This diagram is in full analogy to Sheng’s study [22].
However, due to the curvature of the particles, which
reduces the transition temperature and prevents the
growth of an infinitely thick wetting film [25], the tran-
sition line intersects 7, = 1 at a finite distance of d/a =
0.53. The insets show capillary bridges at different loca-
tions along the transition line. Clearly, the bridge itself
becomes smaller and smaller. We observe that even be-
yond the critical point, the smooth creation of the capil-
lary bridge takes place in a very narrow interval for the
distance of contact d. If, in a Gedanken experiment, one
were able to move the colloids close to the appropriate
distance where the smooth or continuous bridge—
no-bridge transition occurs, then small fluctuations in
the colloids’ positions would induce stochastic transitions
between both configurations. This might be considered as
an effective two-state system, which also occurs, e. g., in
the complex unfolding transition of RNA under a load
force [29].

We observe that for decreasing particle radius the tran-
sition line in Fig. 2 shrinks until the critical point reaches
the bulk transition temperature 7, = 1 at around a/¢, =
11. We attribute this to the strong director deformations
close to smaller particles, which prevent the discontinu-
ous formation of the capillary bridges. Figure 3 gives a
qualitative account of the location of the critical points as
a function of 7 and a/&,. Below the line, a first-order
transition between the no-bridge and the bridge configu-
ration occurs when the distance to contact d is decreased.
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Whereas above the line, the configurations evolve con-
tinuously into each other. For a/&, — oo, i.e., for the slab
geometry, the line approaches 7 = 1.244 [22]. The inset
shows interaction potentials as a function of d/a for
different particle radii at 7 = 1. Clearly, the strength of
the interaction potential scales with a?£,. For a/&, = 11
the potential just becomes smooth at the critical dis-
tance d = 0.75a. The capillary bridge is already well
established. Note that, as mentioned before, the transi-
tion from the no-bridge to the bridge configuration
occurs in a very narrow interval of d. At a/&, = 3.5,
the potential is completely smooth. The capillary bridge
at the minimum (see inset) possesses weaker orienta-
tional order compared to the previous cases. The repulsion
at small d/a is due to strong elastic distortions in the
director field when the particles come close to each other.
The dotted line corresponds to our numerical calculation,
whereas the full line is a fit to the Morse potential U(d) =
D[(1 — e=¢W@=d)2 — 1], with D = 0.21 and d, = 0.63
being, respectively, the dissociation or binding energy
of the two-particle cluster and the equilibrium distance.
The constant ¢ = 2.25 is connected to the frequency with
which the particles oscillate around d; when treated as a
harmonic oscillator [30]. Morse potentials are used to
describe nonlinear effects in the vibration spectrum of
diatomic molecules [31]. Considering the fact that col-
loids are often viewed as models for atomic systems [32],
our results concerning the Morse potential might suggest
that capillary bridges mediate the formation of colloidal
molecules [33] which could be used to model aspects of
molecular systems [34]. Experimental techniques to test
our predictions are confocal microscopy or light scatter-
ing [32].

In conclusion, we have presented a detailed study of
two-particle interactions due to the formation of capillary
bridges close to a nematic-isotropic phase transition. We
have demonstrated that the first-order transition line,
which separates the bridge from the no-bridge transition
and ends in a critical point, vanishes below a particle
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FIG. 3. Ina 7, a diagram, the line of critical points separates

regions where the transition between the no-bridge and the
bridge transition is either discontinuous or smooth. The inset
shows interaction profiles for different particle radii at 7 = 1.
The solid line is a fit to a Morse potential.
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radius of a/&, = 11. Furthermore, we have speculated
about an effective two-state system close to the critical
points. Since the interaction energy scales with a?&,,
varying the particle radius provides a means to create
two-particle potentials with an attraction whose strength
ranges from very strong (which explains the sticking of
particles [35]) to weak. For sufficiently small particles,
the interaction potential can be approximated by a Morse
potential, which suggests the formation and study of
colloidal molecules [33] including, e.g., their vibrational
spectrum. In addition, the binding energy or the energy
gain due to the creation of a capillary bridge approaches
the thermal energy so that fluctuations and therefore
probably Casimir forces, also discussed within liquid
crystals [36], become important. Introducing a finite an-
choring strength of the mesogenic molecules gives a
further control parameter for the two-particle interaction.
This all shows that two- and also many-particle inter-
actions due to the formation of capillary bridges in liquid-
crystal colloids present an attractive means to study the
self-assembly of colloidal structures both in the bulk and
on structured surfaces. Finally, such capillary bridges
might also contribute to protein-protein interactions in
binary biomembranes [37].
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