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Force on a Charged Test Particle in a Collisional Flowing Plasma
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The force on a charged test particle embedded in a flowing (electron-ion) plasma is calculated using
the linear dielectric response formalism. This approach allows us to take into account ion-neutral
collisions self-consistently. The effect of collisions on the ion drag force is analyzed. It is shown that
collisions can play a major role and can enhance the force substantially.
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(2) in Eq. (4), finally obtain for the wake potential:
The main forces acting on a charged particle embedded
in a weakly anisotropic (unmagnetized) plasma have an
electrostatic nature. They are usually exerted due to self-
consistent large-scale electric fields and the plasma fluxes
induced by these fields. The combination of the momen-
tum transfer due to the relative plasma flow (‘‘drag
force’’) and the electrostatic force determines equilibrium
plasma configurations. Knowledge of the drag force is
especially important in complex (dusty) plasmas, when
equilibrium states as well as dynamics of charged micro-
particles are considered. In this Letter, we calculate the
force on a charged test particle embedded in a flowing
(electron-ion) plasma using the linear dielectric response
formalism. This approach allows us to take into account
ion-neutral collisions self-consistently and also to re-
trieve the potential distribution around the particle. We
analyze how the collisions change the flow-induced force
on the particle and apply the obtained results to evaluate
the ion drag force on charged microparticles in complex
plasmas.

We start by calculating the potential around a pointlike
test particle. The plasma flows with very small relative
velocity u (much smaller than the ion thermal velocity
vTi �

�������������
Ti=mi

p
, e.g., ambipolar drift in bulk plasmas). The

equivalent problem is to calculate a potential around the
particle moving through the plasma with the velocity �u.
The potential is [1]

’�R� �
Z 4�eZeikR

k2"��ku; k�
dk

�2��3
; (1)

where R is the coordinate with respect to the particle
center and Z is the particle charge number (positive or
negative).

The plasma permittivity is " � 1� �e � �i, with the
electron susceptibility �e ’ �k�De�

�2. The ion suscepti-
bility is [2]
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Here �De;i �
�����������������������
Te;i=4�e2n

q
is the electron or ion Debye

length with n the unperturbed (electron or ion) density,
and � is the effective frequency of the ion-neutral colli-
sions. The power series for the dispersion function is
F ��� ’ �2�2 � i

����
�

p
� (for j�j 	 1), and the asymptotic

series is F ��� ’ �1� 1
2�

�2 (for j�j 
 1) [3]. We assume
the flow is along the z axis. Introducing the ion mean-free
path ‘ � vTi=� and the thermal Mach number MT �
u=vTi , we substitute ! � �kzu in Eq. (2) and expand it
into a series over small MT . Then the first two expansion
terms for the plasma permittivity are
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(3)

Here "�k� � "��kzu; k� and � is the linearized Debye

length, ��1 �
�����������������������
��2
Di � ��2

De

q
, which is assumed to be very

close to the ion Debye length (since Te is usually much
larger than Ti). In the hydrodynamic limit (k‘	 1), the
plasma polarization along the flow is due to the ion
collisions with neutrals. In the opposite weakly colli-
sional limit (k‘
 1) it is because of the ion Landau
damping. Note that for k‘	 MT the permittivity scales
as / �MTkz��1, or even / k�2 (depending on k).

One can divide the potential in Eq. (1) into the
‘‘screened’’ and the ‘‘wake’’ parts: ’ � ’0 � ’w. The
isotropic screened potential ’0�R� � �eZ=R� exp��R=��
is determined by "�0; k� � "0�k� ’ 1� �k���2, so that the
distortion due to the plasma flow is

’w�R� �
eZ

2�2

Z �
1

"�k�
�

1

"0�k�

�
eikR

k2
dk: (4)

Let us consider the potential profile along the z axis. We
normalize the wave number and coordinate by the screen-
ing length, k�! k and z=�! z, and, substituting Eq. (3)
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(5)
We extended the integration down to k � 0, because the
contribution of k & ��=‘�MT to the integral is propor-
tional to M3

T [since "�1�k� / MTkz in this range] and thus
can be neglected. Of course, condition ��=‘�MT 	 1
should also be satisfied.

First, we set the upper limit kmax in the second integral
Eq. (5) equal to infinity. At large distances (jzj 
 1)
Eq. (5) has the following asymptotic behavior: In the
strongly collisional regime (�=‘
 1) the main contribu-
tion is due to the first term and the potential scales
as / �Zz=jzj3 [4], whereas in the absence of collisions
(�=‘! 0) the second (Landau damping) term yields /
�Z=z3 [5]. In a close vicinity of the particle (jzj ! 0), the
contribution of the first term is / �Zz, but the second one
yields a logarithmic divergence of the electric field, since
’w / �Zz lnjzj [6].

The wake potential ’w represents the plasma polariza-
tion along the z axis. Let us discuss the behavior of ’w.
The logarithmic divergence of the wake field at small z is,
of course, unphysical. Formally, this occurs because the
expression in the second integral in Eq. (5)—the ion
Landau damping term—scales as / k�1 at 1 	 k &

jzj�1. Physically, the wake electric field diverges because
large values of k imply the contribution from a close
vicinity of the test charge, where plasma perturbations
are so strong that the linear response approach is no
longer valid. For ions, this vicinity is approximately a
sphere with the Coulomb radius RC � e2jZj=Ti. Linear
theory applied inside this sphere yields absurd results:
For instance, the total ion density becomes negative for
Z > 0. Hence, the necessary condition for the linear
approximation to be used is to have the whole range of
interaction with the particle —the screening length—be
much larger than the range of strong interaction—the
Coulomb radius, i.e., �
 RC. Then the upper limit of
the integration in Eq. (5) can be set approximately equal
to kmax � �=RC, since the integral has ‘‘logarithmic con-
vergence’’ at k * 1.

The polarization along the plasma flow induces the
electric force on the particle. Equation (5) yields the force
F � �eZ�d’w=dz�jz�0 > 0. Note that it is always
pointed in the direction of the flux, and both contribu-
tions— collisional and the Landau damping—have the
same sign. Substituting kmax � �=RC 
 1 in Eq. (5), we
derive at the ‘‘logarithmic accuracy’’:
FIG. 1. Function K from Eq. (7) versus the ratio of the
screening length to the ion mean-free path, �=‘. The function
characterizes the contribution of the ion-neutral collisions to
the ion drag force [Eq. (6)].
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The function K represents the contribution of collisions.
Figure 1 shows that for ‘ * � the ‘‘collisional function’’
scales as K� ��=‘�4 	 1 and is small compared to the
Landau damping part (constant logarithmic term). When
‘ < �, we have K� �=‘ * 1 and the collisional contri-
bution can prevail, enhancing the force.

In order to ensure that the approximations we made
above to derive Eqs. (6) and (7) do not affect the validity
of the obtained analytical results, a series of numerical
tests was performed. Using the tabulated dispersion
function F ���, the electric force on the particle
was obtained by direct numerical integration of Eq. (1)
for different values of parameters �=‘, MT , and
kmax. Figure 2 shows the comparison of the analytical
expression, Eq. (6), with the numerically calculated
force. For the sake of convenience, the force is normalized
to 1

3�MT�eZ=��2, so that the analytical curves do not
depend on MT . One can see that the agreement between
analytical and numerical results is fairly good [small
offset & 15% at �=‘	 1 is due to the logarithmic accu-
racy of Eq. (6), i.e., because constant terms O�1� were
omitted compared to the logarithmic term]. It is note-
worthy that the analytical formula, being formally
derived for very small MT , remains sufficiently accurate
for relatively large Mach numbers. Deviation from
the numerical data occurs at �=‘ * 1, and it is stronger
for larger MT because of the condition ��=‘�MT 	 1
imposed after Eq. (5). Hence, inequality MT & ‘=� can
be considered as a practical range of Mach numbers where
205007-2



FIG. 2. Comparison of the analytical expression for the ion
drag force [Eq. (6), solid line] with the numerically calculated
force. The results are normalized and plotted as functions of the
collisional parameter �=‘ for different values of the Mach
number MT � u=vTi and the integration limit kmax (see text).
Figures (a), (b), and (c) correspond to kmax � 10, 102, and 103,
respectively, and symbols represent MT � 0.01 (�), 0.1 (�),
0.2 (�), and 0.3 (4).
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Eq. (6) is valid. One can also see that the dependence of
the force on particular choice for the upper integra-
tion limit is indeed very weak (logarithmic, provided
kmax 
 1).

In fact, the Landau damping contribution to the force in
Eq. (6) is physically identical to the so-called ‘‘ion drag
force’’: The Landau damping terms coincide with the
well-known expression for the (collisionless) ion drag
obtained in the limit of large Coulomb logarithm,
205007-3
ln��=RC� 
 1 (e.g., Refs. [1,7]). The force is usually
calculated assuming the unperturbed (isotropic) potential
’0 around a particle, and the momentum transfer is
derived from the trajectory deflection. The polarization
potential ’w derived here is essentially determined by a
sum over these trajectories with the ‘‘unperturbed’’ ion
density along them. Both approaches are obviously iden-
tical as long as only linear effects are considered [8,9]. In
terms of the ion trajectories, the (nonlinear) polarization
at small R is equivalent to the strong deflection of ions
which occurs at R & RC. The contribution of these ions to
the force is logarithmically small—the resulting momen-
tum transfer is � ln��=RC� times smaller than the total
force [7,8]. The latter justifies the choice of the upper
cutoff kmax � �=RC in Eq. (5). Thus, it is natural to refer
to the Landau damping term in Eq. (6) as the ‘‘collision-
less ion drag,’’ and to the collisional term as the ‘‘colli-
sional correction.’’ Collisions do not play a role while the
ion mean-free path exceeds the screening length and
function K is small; but in the opposite case, when ‘	
�, they become crucial. Figure 2, where the normalized
force is plotted [i.e., terms in the brackets in Eq. (6)],
clearly shows this transition, from the collisionless
asymptote,

�������
2�

p
ln��=RC�, to the collisional one,

1
2���=‘� �

�������
2�

p
ln�‘=RC�. Note that the collisions dimin-

ish the argument of the Coulomb logarithm from �=RC to
‘=RC; when they become too frequent (‘ & RC), the
kinetic effects—the Landau damping—completely dis-
appear and only hydrodynamic effects play a role. Then
the wake potential and the corresponding force on the
particle are determined by the first integral in Eq. (5).
The upper limit of integration can be set equal infinity in
this case, since the integral converges.

The reason why the collisions enhance the ion drag
force can be understood in terms of the ion trajectories:
Every collision with neutrals ‘‘eliminates’’ the angular
momentum (with respect to the particle) the ion had
before the collision due to the drift. Hence, the more
collisions the ions experience while passing the particle
within the Debye sphere, the more ‘‘radial’’ their trajec-
tories become. This ‘‘collisionally induced’’ radial mo-
tion (superimposed on the drift) causes the ion
trajectories to focus closer to the particle. The ‘‘focusing
center’’ for the trajectories is obviously located down-
stream for the negatively charged particle. (If the particle
is positively charged the ions are defocused, which sim-
ply means that the focusing center is upstream.) The
focusing implies the local increase of the ion density
and, thus, induces an additional electric field which in-
creases the force.

Let us consider how the ion drag force changes when a
particle has a finite size a. The correction occurs because
a certain fraction of ions is absorbed on a particle: In
terms of the ion orbits, the ions having an impact pa-
rameter smaller than the so-called ‘‘absorption radius,’’
�abs, transfer their momentum in direct collisions with
the particle [10]. The rest of the ions are scattered due to
205007-3
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the electrostatic interaction and their contribution to the
force is calculated as for a pointlike particle. The absorp-
tion radius depends on the ratio �=‘ and attains the
maximum value �abs � RC at �=‘� 1, because of the
ion trapping inside the Coulomb sphere [11–13]. Hence,
the ratio of the momentum transfer due to absorption to
that of the electrostatic scattering does not exceed
�ln�1��=RC�. Therefore, the influence of the particle
size on the ion drag is small and can be neglected as
long as the Coulomb logarithm is large.

One can use the obtained results to calculate the ion
drag force on a microparticle in complex plasmas. The
advantage of Eq. (6) compared to the expressions used
thus far is that the former allows us to take into account
the role of ion-neutral collisions self-consistently. The
(negative) particle charge is determined by the parameter
 � e2jZj=aTe, which is always between a ‘‘few tenths’’
and a ‘‘few’’ (even when ion-neutral collisions are taken
into account, e.g., Refs. [13,14]). We also introduce the
electron-to-ion temperature ratio ! � Te=Ti, which is
usually in the range 10 & ! & 100. Then Eq. (6) can be
conveniently rewritten in terms of the plasma and par-
ticle parameters as follows:

F � 4
3!

2 2a2nmivTiu�K�
�������
2�

p
ln��; (8)

where the argument of the Coulomb logarithm is � �
�=RC � �! ��1��=a�. As we discussed above, in the
‘‘collisionless’’ regime (‘ * �), function K can be ne-
glected and Eq. (8) reduces to the standard expression for
the ion drag force [1,7]. In the opposite ‘‘strongly colli-
sional’’ regime (‘	 �), when the Coulomb logarithm is
small compared to K, the force is solely determined by
the collisional ion focusing, as shown in Fig. 2. Note that
the transition between these two regimes is accompanied
by change in the force dependence on pressure p: The
drift velocity is usually determined by the ion mobility,
with u=vTi ’ eE‘=Ti / p�1 (subthermal ion drift, u &

vTi , is often observed in the bulk plasma, where it is due to
the ambipolar diffusion in a weak electric field E).
Therefore, F / p�1 in the collisionless regime (lower
pressures). In the strongly collisional case the ion drag
does not explicitly depend on p, because K / ‘�1 / p for
‘ & �. Note, however, that the other plasma parameters
(i.e., n,  , and !) are generally some functions of p, and
this can yield an additional dependence of the force on
pressure.

In conclusion, let us discuss applicability of the ob-
tained results for typical experimental conditions. The
expression for the ion drag force, Eq. (8), is valid when
the condition � 
 1 is satisfied. The argument of the
Coulomb logarithm scales as � / a�1n�1=2T�1

e T3=2
i .

Therefore, one can immediately conclude that our ap-
proach may be applied in the bulk region of discharges
for sufficiently rarefied plasmas with high ion (or low
electron) temperatures, and/or for small (submicron)
205007-4
particles. For example, in Ar plasma at pressure p �
1 mbar with typical discharge parameters: Te � 1 eV,
Ti � 0:03 eV, and n � 108 cm�3, the (ion) screening
length is � ’ 130 $m and the normalized particle charge
is  ’ 1 [13]. For half-micron particles (2a � 0:5 $m),
we then derive � ’ 16, i.e., Eq. (8) is well applicable.
Also, the role of collisional focusing is already substan-
tial for this example: The ion mean-free path is ‘ ’
15 $m which yields �=‘ ’ 9 and, thus, the resulting colli-
sional correction K ’ 7 (see Fig. 1) is equal to the colli-
sionless contribution

�������
2�

p
ln� ’ 7.

In complex plasmas, however, one often has to deal
with the situation when � & 1 (e.g., relatively big par-
ticles and/or high plasma density). Then the linear dielec-
tric response formalism is no longer applicable: The range
of the ‘‘nonlinear’’ ion-grain interaction, RC, exceeds the
screening length. For this situation, the ion drag force was
derived recently by calculating trajectories for scattered
ions [7,15,16]. Unfortunately, it is unclear how collisions
with neutrals can be included self-consistently in this
case. Their role for � & 1 still needs to be studied.
Also, the influence of a finite particle size might be
crucial under these circumstances, e.g., due to the change
in the momentum transfer caused by the ion absorption
[15,16], because of the effect of trapped ions [12,13], etc.
Investigation of all these problems requires development
of sophisticated numerical methods.
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