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of the Dirac Equation with Scalar and Vector Potentials
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We show that the Dirac equation in (3� 1) dimensions gives rise to supersymmetric patterns when
the scalar and vector potentials are (i) Coulombic with arbitrary strengths or (ii) when their sum or
difference is a constant, leading to relativistic pseudospin and spin symmetries. The conserved
quantities and the common intertwining relation responsible for such patterns are discussed.
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FIG. 1. Schematic qualitative supersymmetric patterns in
(a) SUSYQM and in the (b) Coulomb, (c) pseudospin, and
(d) spin limits of the Dirac Hamiltonian. In (a), H1 and H2

have identical spectra with an additional level for H1 when
SUSY is exact. Spectroscopic notation n‘j in (b)–(d) refers to
quantum numbers of the upper component, and �, N, and ~‘‘ are
defined in the text. In (b) the radial nodes n are related to nr by
nr � n �nr � n� 1� for � < 0 �� > 0�, and only the E���

nr;�
wise degenerate levels with a possible nondegenerate branch is shown.
The Dirac equation for spin 1=2 particles plays a cen-
tral role in the relativistic description of atoms, nuclei,
and hadrons. In atoms the relevant potentials felt by the
electron (or muon in muonic atoms) are Coulombic vector
potentials. Relativistic mean fields in nuclei generated by
meson exchanges [1] and quark confinement in hadrons
[2] necessitate a mixture of Lorentz vector and scalar
potentials. Recently, symmetries of Dirac Hamiltonians
with such Lorentz structure have been shown to be rele-
vant for explaining the observed degeneracies of certain
shell-model orbitals in nuclei (‘‘pseudospin doublets’’) [3]
and the absence of quark spin-orbit splitting (‘‘spin dou-
blets’’) [4], as observed in heavy-light quark mesons. The
goal of the current Letter is to show that the degeneracy
patterns and relations between wave functions implied by
such relativistic symmetries resemble the patterns found
in supersymmetric schemes. The underlying mechanism
responsible for such properties will be examined. The
feasibility of such a proposal gains support from the
fact that Dirac Hamiltonians with selected external fields
are known to be supersymmetric [5], e.g., for a vector
Coulomb potential [6].

Supersymmetric quantum mechanics (SUSYQM), ini-
tially proposed as a model for supersymmetry (SUSY)
breaking in field theory [7], has by now developed into a
field in its own right, with applications in diverse areas of
physics [8]. The essential ingredients of SUSYQM are the
supersymmetric Hamiltonian H � �H1

0
0
H2
� � �L

yL
0

0
LLy�

and chargesQ� � �0L
0
0�,Q� � �00

Ly

0 � which generate the
supersymmetric algebra �H ; Q�	 � fQ�; Q�g � 0,
fQ�; Q�g � H . The partner Hamiltonians H1 and H2

satisfy an intertwining relation, LH1 � H2L, where in
one dimension the transformation operator L �
d
dx�W�x� is a first-order Darboux transformation ex-
pressed in terms of a superpotential W�x�. The intertwin-
ing relation ensures that, if �1 is an eigenstate ofH1, then
also �2 � L�1 is an eigenstate of H2 with the same
energy, unless L�1 vanishes or produces an unphysical
state (e.g., non-normalizable). Consequently, as shown in
Fig. 1(a), the SUSY partner Hamiltonians H1 and H2 are
isospectral in the sense that their spectra consist of pair-
0031-9007=04=92(20)=202501(4)$22.50 
single state in one sector (when the supersymmetry is
exact). The wave functions of the degenerate levels are
simply related in terms of L and Ly. Such characteristic
features define a supersymmetric pattern. The intertwin-
ing relation ensures such properties for any pair of
Hamiltonians not necessarily factorizable. We will con-
tinue to use the term ‘‘supersymmetric pattern’’ also in
such circumstances. In what follows, we focus the dis-
cussion on supersymmetric patterns obtained in selected
Dirac Hamiltonians.

The Dirac Hamiltonian, H, for a fermion of mass M
moving in external scalar VS and vector VV potentials is
given by H � �̂� � p� �̂��M� VS� � VV , where �̂�, �̂� are
the usual Dirac matrices [9], and we have set �h � c � 1.
2004 The American Physical Society 202501-1
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When the potentials are spherically symmetric: VS �
VS�r�, VV � VV�r�, the operator K̂K � ��̂� �� � ‘� 1�
(with � the Pauli matrices and ‘ � �ir r), com-
mutes with H and its nonzero integer eigenvalues � �
��j� 1=2� are used to label the Dirac wave functions
��; m � r�1�G��Y‘�	

�j�
m ; iF��Y‘0�	

�j�
m �. Here G��r� and

F��r� are the radial wave functions of the upper and lower
components, respectively; Y‘ and � are the spherical
harmonic and spin function which are coupled to angular
momentum j with projection m. The labels � � ��j�
1=2�< 0 and ‘0 � ‘� 1 hold for aligned spin j � ‘�
1=2 (s1=2; p3=2, etc.), while � � �j� 1=2� > 0 and ‘0 �
‘� 1 hold for unaligned spin j � ‘� 1=2 (p1=2; d3=2;
etc.). Denoting the pair of radial wave functions by

	� �

�
G�

F�

�
; (1)

the radial Dirac equations can be cast in Hamiltonian
form, H�	� � E	�, with

H� �

 
M�
 � d

dr�
�
r

d
dr�

�
r ��M���

!
; (2a)


�r� � VS � VV; ��r� � VS � VV: (2b)

We now look for Dirac Hamiltonians H�1
and H�2

which
satisfy an intertwining relation of the form
202501-2
LH�1
� H�2

L: (3)

Following [10], we consider a matrical Darboux trans-
formation operator,

L � A�r�
d
dr

� B�r�; (4)

where A and B are 2 2 matrices with r-dependent en-
tries Aij�r�, Bij�r�. Relations (3) and (4) should be re-
garded as a system of equations for the unknown
operator L and the so-far unspecified potentials in H�
(2). The matrices A�r� and B�r� are found to be

A11 � A22 � a; A12 � �A21 � b; (5a)

B11 � �b�M� 
� �
1

2r
a!��!� � 1� �

1

2
c2; (5b)

B22 � b�M��� �
1

2r
a!��!� � 1� �

1

2
c2; (5c)

B12 � aVV �
1

2r
b!��!� � 1� �

1

2
c1; (5d)

B21 � �aVV �
1

2r
b!��!� � 1� �

1

2
c1; (5e)

where !� � ��1 � �2�, !� � ��2 � �1� and a; b; c1; c2
are constants. In addition, the following relations have to
be obeyed:
2a
�
V0
S � VV

!�

r

�
�b

!��!� � 1��!� � 1�

r2
� c1

!�

r
� 0; (6a)

a
�
�4VV�M� VS� �

!��!� � 1��!� � 1�

r2

�
�2b

!�

r
�!��M� VS� � VV	 � c2

!�

r
� 2c1�M� VS� � 0; (6b)
where V 0
S denotes differentiation with respect to r. In the

usual application of SUSYQM, one starts from a solvable
Hamiltonian H1 and uses the intertwining relation to
obtain a new solvable Hamiltonian H2. In the present
case, we employ a different strategy, namely, insist that
both partner Hamiltonians H�1

and H�2
be of the form

prescribed in Eq. (2) with the same potentials, and look
for solutions of Eq. (6) such that the potentials are inde-
pendent of �. We find that there are six such solutions
characterized by !�; !� � 0;�1. The solution with
!� � 0 is trivial (�1 � �2), L � �bH� �

1
2 c2I, where

I is the 2 2 unit matrix. The solutions with !� � �1
lead to constant potentials VS � S0 and VV � V0. The
physically interesting solutions require !� � 0; 1;�1
and lead to the Coulomb, pseudospin, and spin limits,
respectively.

The Coulomb limit ��1 � �2 � 0�. —The solutions of
Eq. (6) with !� � �1 � �2 � 0 fix the potentials to be of
Coulomb type:

VS �
(S
r

� S0; VV �
(V
r

� V0; (7)

with arbitrary strengths, (S, (V . The constants S0 and V0

amount to constant shifts in the mass and Hamiltonian,
respectively, and henceforth will be omitted. In terms
of the quantities )1 � �(SM � (VE�=* , )2 � �(SE�

(VM�=* , * �
�������������������
M2 � E2

p
, and + �

������������������������������
�2 � (2

S � (2
V

q
, the

quantization condition reads +� )1 � �nr �nr � 0;

1; 2; . . . �, and leads to the eigenvalues [9] E���
nr;�=M �

��(S(V � ,
�������������������������������
,2 � (2

S � (2
V

q
	=�(2

V � ,2�, where , �

�nr � +�, and the � dependence enters through the factor
+. The spectrum consists of two branches denoted by
superscripts ��� and ���. The corresponding eigenfunc-
tions are

	nr;�/

 
�

��������������
M�E

p
����)2�F1�nrF2	��������������

M�E
p

����)2�F1�nrF2	

!
-+e�-=2; (8)

where E � E���
nr;� and F1 � F��nr; 2+� 1; -�, F2 �

F��nr � 1; 2+� 1; -� are confluent hypergeometric
functions in the variable - � 2*r. The states and energies
in each branch are labeled by �nr; ��. It is also possible to
express the results in terms of the principal quantum
number N defined as N � nr � j�j, �N � 1; 2; . . . �. For
nr � 1, the eigenvalues in each branch are twofold degen-
erate with respect to the sign of �, i.e., E���

nr;� � E���
nr;�� and

E���
nr;� � E���

nr;��. For nr � 0, there is only one acceptable
202501-2
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state for each �, which has � < 0 for the ��� branch and
� > 0 for the ��� branch. Equivalently, for a fixed prin-
cipal quantum numberN, the allowed values of � are � �
�1;�2; . . . ;��N � 1�;�N for the ��� branch and � �
�1;�2; . . . ;��N � 1�;�N for the ��� branch of the
spectrum.

Focusing on the set of states with �1 � ��2 � �, the
levels are separated according to the value of j�j � j�
1=2. For fixed �, E���

nr;� is an increasing function of nr and,
as shown in Fig. 1(b), for each value of j we have a
characteristic supersymmetric pattern. There are two
towers of energy levels, one for �j�j (with nr �
0; 1; 2; . . . ) and one for �j�j (with nr � 1; 2; . . . ). The
two towers are identical, except that the E���

nr�0;�j�j level
at the bottom of the �j�j tower is nondegenerate. Similar
patterns of pairwise degenerate levels with �� appear
also in the ��� branch of the spectrum. However, since for

fixed �, E���
nr;� is a decreasing function of nr, the non-

degenerate E���
nr�0;j�j level is now at the top of the �j�j

tower, resulting in an inverted supersymmetric pattern.
From Eqs. (5) and (6), we find the transformation operator
to be

L � a

 
d
dr�

/�
r � M(�

�1
� (S

�1

d
dr�

(V
r

(S
�1

d
dr�

(V
r

d
dr�

/�
r � M(�

�1

!
; (9)

where /���1�(S(�=�1 and (���(S�(V�. The op-
erator L connects degenerate states with �nr � 1;���,
and annihilates the nondegenerate states with nr � 0:

L	nr;�1 � C	nr;�2
��1 � ��2�: (10)

Here C � �a*=�1�
������������������������
nr�+� )1�

p
and 	nr;� are given

in Eq. (8). Constructing supersymmetric charges Q�

and Hamiltonian H from L and H�1
, H�2

in the man-
ner described at the beginning of the Letter, ensures
that �H ; Q�	 � fQ�; Q�g � 0, but now fQ�; Q�g /
�H � E���

nr�0;�	�H � E���
nr�0;�	, with � � �1 � ��2.

These relations represent a quadratic deformation of the
conventional supersymmetric algebra [10], which arises
because both the Dirac Hamiltonian and the transforma-
tion operator L are of first order.

The explicit solvability and observed degeneracies of
the relativistic Coulomb problem are related to the exis-
tence of an additional conserved Hermitian operator:

B � �iK̂K+5�H � �̂�M� �
� � r
r

�(VM� (SH�; (11)

which commutes with the full Dirac scalar and vector
Coulomb Hamiltonian H but anticommutes with K̂K. This
operator is a generalization of the Johnson-Lippmann
operator applicable for (S � 0 [11].

The pseudospin limit ��1 � �2 � 1�. —The solutions of
Eq. (6) with !� � �1 � �2 � 1 require that the sum of
scalar and vector potentials is a constant:


�r� � VS�r� � VV�r� � 
0: (12)
202501-3
Under such a condition, the Dirac Hamiltonian is invari-
ant under an SU(2) algebra, whose generators are [12,13]

~̂SS~SS 1 �

�
~̂ss~ss1 0
0 ŝs1

�
: (13)

Here ŝs1 � 21=2 are the usual spin operators, ~̂ss~ss1 �
Upŝs1Up and Up � ��p

p . This relativistic symmetry has
been used [3] to explain the occurrence of pseudospin
doublets in nuclei [14]. The latter refer to the empirical
observation of quasidegenerate pairs of certain normal-
parity shell-model orbitals with nonrelativistic single-
nucleon radial, orbital, and total angular momentum
quantum numbers: �n;‘;j�‘�1=2� and �n�1;‘�2;j�
‘�3=2�. The doublet structure is expressed in terms of a
‘‘pseudo’’ orbital angular momentum, ~‘‘ � ‘� 1, and
pseudo spin, ~ss � 1=2, which are coupled to j � ~‘‘� ~ss.
For example, �ns1=2; �n� 1� d3=2	 will have ~‘‘ � 1, etc.,
Such doublets play a central role in explaining features
of nuclei [15], including superdeformation and identi-
cal bands. In a relativistic description of nuclei [1],
these nonrelativistic wave functions are identified with
the upper components of Dirac wave functions, ��1<0;m
and ��2>0;m with �1 � �2 � 1, which are eigenstates
of a Dirac Hamiltonian with scalar and vector mean
field potentials, approximately satisfying condition (12).
The corresponding lower components have n nodes [16]
and orbital angular momentum equal to ~‘‘ [3]. In the
pseudospin limit, these two Dirac states form a de-
generate doublet, and their radial components satisfy
F�1

� F�2
, and �dG�1

=dr� � ��1=r�G�1
� �dG�2

=dr� �
��2=r�G�2

. These relations have been tested in numerous
realistic mean field calculations in a variety of nuclei, and
were found to be obeyed to a good approximation, espe-
cially for doublets near the Fermi surface [17,18]. For
potentials with asymptotic behavior as encountered in
nuclei, the Dirac eigenstates, for which both the upper
(G�) and lower (F�) components have no nodes, can occur
only for � < 0, and, hence, do not have a degenerate
partner eigenstate (with � > 0) [16]. These nodeless
Dirac states correspond to the shell-model states with
�n � 0; ‘; j � ‘� 1=2�. For heavy nuclei, such states
with large j, i.e., 0g9=2; 0h11=2; 0i13=2, are the ‘‘intruder’’
abnormal-parity states which, indeed, empirically are
found not to be part of a doublet [15]. Altogether, as
shown in Fig. 1(c), the ensemble of Dirac states with �1 �
�2 � 1 exhibits a supersymmetric pattern of twin towers
with pairwise degenerate pseudospin doublets sharing a
common ~‘‘, and an additional nondegenerate nodeless
state at the bottom of the �1 < 0 tower. An exception to
this rule is the tower with �2 � 1 (p1=2 states with ~‘‘ � 0),
which is on its own, because states with �1 � 0 do not
exist. From Eqs. (5) and (6), we find the transformation
operator to be

L � b

 
0 d

dr�
�2

r
� d

dr�
�1

r �2M� �� 
0�

!
: (14)
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L connects the two doublet states as in Eq. (10) but with
�1 � �2 � 1 and C � b�M�
0 � E�. In this case,
fQ�; Q�g � b2�H � �M�
0�	�H � �M� 
0�	 is pro-
portional to a polynomial of H , again indicating a
deformation of the conventional SUSY algebra. In real
nuclei, the relativistic pseudospin symmetry is slightly
broken, implying 
�r� � 
0 in Eq. (12). Taking H� as in
Eq. (2) and L as in Eq. (14) but with 
0 ! 
�r�, we find
that LH�1

�H�2
L � ib
022. Furthermore, fQ�; Q�g has

the same formal form as before, but the appearance of

�r� instead of 
0 implies that the anticommutator is no
longer just a polynomial of H .

The spin limit ��1 � �2 � �1�. —The solutions of
Eq. (6) with !� � �1 � �2 � �1 require that the differ-
ence of the scalar and vector potentials is a constant

��r� � VS�r� � VV�r� � �0: (15)

Under such a condition, the Dirac Hamiltonian is invari-
ant under another SU(2) algebra, whose generators are
obtained from Eq. (13) by interchanging ŝs1 and ~̂ss~ss1 [12]:

ŜS 1 �

�
ŝs1 0

0 ~̂ss~ss1

�
: (16)

This relativistic symmetry gives rise to degenerate dou-
blets of Dirac states ��1<0;m and ��2>0;m with �1 � �2 �
�1, whose upper components have quantum numbers
�n;‘;j�‘�1=2� and �n;‘;j�‘�1=2�. Such spin dou-
blets were argued to be relevant for degeneracies observed
in heavy-light quark mesons [4] and possibly for the
antinucleon spectrum in a nucleus [19]. In the spin limit,
the corresponding radial components satisfy G�1

�G�2

and �dF�1
=dr�� ��1=r�F�1

� �dF�2
=dr�� ��2=r�F�2

. As
shown in Fig. 1(d), the spectrum consists of towers of
states with �1 � �2 � �1, forming pairwise degenerate
spin doublets. In this case, none of the towers have a
single nondegenerate state and, hence, the spectrum cor-
responds to that of a broken SUSY [8]. The tower with
�1 � �1 (s1=2 states) is on its own, since states with
�2 � 0 do not exist. The transformation operator, found
from Eqs. (5) and (6),

L � �b
�
�2M��0 �
� � d

dr�
�1

r
d
dr�

�2

r 0

�
; (17)

connects the two doublet states as in Eq. (10), but with
�1 � �2 � �1 and C � �b�E�M� �0�. The nilpotent
charges Q� commute with the supersymmetric Hamil-
tonian H and exhibit a deformation of the conven-
tional SUSY algebra, fQ�; Q�g � b2�H � �M��0�	 
�H � �M� �0�	. When ��r� � �0 in Eq. (15), we have
LH�1

�H�2
L � �ib�022, where H� is given in Eq. (2)

and L, as well as fQ�; Q�g, have the same form as before
but with �0 ! ��r�.

In summary, a common intertwining relation was
shown to provide the basis for a unified treatment of three
separate limits at which a Dirac Hamiltonian, with scalar
and vector potentials, exhibits supersymmetric patterns.
202501-4
In the Coulomb limit, the potentials are 1=r but their
strengths are otherwise arbitrary. In the pseudospin or
spin limits, there are no restrictions on the r dependence
of the potentials but there is a constraint on their sum or
difference. The characteristic degeneracies reflect the
presence of additional conserved operators, the general-
ized Johnson-Lippmann operator given in Eq. (11), and
the previously introduced relativistic pseudospin and spin
generators [12,13]. It is gratifying to note that the indi-
cated supersymmetric patterns are manifested empiri-
cally, to a good approximation, in physical dynamical
systems. While previous studies have focused on individ-
ual doublets in nuclei and hadrons, it is the grouping of
several doublets (and intruder levels in nuclei), as sug-
gested in the present work, which highlights the finger-
prints of supersymmetry present in these dynamical
systems.
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