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Some time ago Dashen [Phys. Rev. D 3, 1879 (1971)] pointed out that spontaneous CP violation can
occur in the strong interactions. I show how a simple effective Lagrangian exposes the remarkably large
domain of quark mass parameters for which this occurs. I close with some warnings for lattice
simulations.
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ing structures for lattice gauge simulations. An unpub-
lished preliminary version of these arguments appears as
part of Ref. [3]. The occurrence of this phenomenon with
three degenerate quarks is presented in Ref. [4]. A dis-

the eta meson are both even under charge conjugation.
With massless quarks, the underlying quark-gluon

theory has a chiral symmetry under

 L !  LgL  R !  RgR: (4)
The SU(3) non-Abelian gauge theory of the strong
interactions is quite remarkable in that, once an arbitrary
overall scale is fixed, the only parameters are the quark
masses. Using only a few pseudoscalar meson masses to
fix these parameters, the non-Abelian gauge theory de-
scribing quark confining dynamics is unique. It has been
known for some time [1] that, as these parameters are
varied from their physical values, exotic phenomena can
occur, including spontaneous breakdown of CP symme-
try. Here I consider the theory with three flavors of quark
and map out in detail the regions of parameter space
where this breaking occurs.

While the spontaneous breaking considered here oc-
curs only in unphysical regions of parameter space, there
are several reasons the phenomenon may be of wider
interest. Indeed, CP is broken in the real world, and
thus some mechanism along these lines may be useful
for going beyond the strong interactions. Also, the analy-
sis demonstrates that when the other quarks are massive,
nothing special happens at vanishing up-quark mass.
This raises the question of whether a nondegenerate mass-
less quark is a physical concept and is the main subject of
a separate recent paper [2]. These observations also raise
questions for practical lattice calculations of hadronic
physics, where current algorithms ignore any phases in
the fermion determinant and are unable to explore this
phenomenon.

The possibility of a spontaneous CP violation is most
easily demonstrated in terms of an effective chiral
Lagrangian. I begin with a brief review of this model
with three quarks, namely, the up, down, and strange
quarks. This lays the groundwork for discussion of the
CP violating phase. I then briefly discuss how heavier
states, most particularly the �0 meson, enter without
qualitatively changing the picture. Finally, I make some
concluding remarks on possible impacts of the CP violat-
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cussion of the CP violating phenomenon in terms of the
analytic structure of the partition function is in Ref. [5].

I consider the three flavor theory with its approximate
SU(3) symmetry. Using three flavors simplifies the dis-
cussion, although the CP violating phase can also be
demonstrated for the two flavor theory following the
discussion in Ref. [6]. I work with the familiar octet of
light pseudoscalar meson fields �� with � � 1; . . . ; 8. In
a standard way (see, for example, Ref. [7]) I consider an
effective field theory defined in terms of the SU(3) valued
group element

� � exp�i����=f�� 2 SU�3�: (1)

Here the �� are the usual Gell-Mann matrices, and f� has
a phenomenological value of about 93 MeV. I follow the
normalization convention that Tr���� � 2
��. In the
chiral limit of vanishing quark masses, the interactions
of the eight massless Goldstone bosons are modeled with
the effective Lagrangian density

L0 �
f2�
4
Tr�@��

y@���: (2)

The nonlinear constraint of � onto the group SU(3)
makes this theory nonrenormalizable. It is to be under-
stood only as the starting point for an expansion of
particle interactions in powers of their masses and mo-
menta. Expanding Eq. (2) to second order in the meson
fields gives the conventional kinetic terms for our eight
mesons.

This theory is invariant under parity and charge con-
jugation, manifested by

P : � ! ��1 CP : � ! �	; (3)

where the operation 	 refers to complex conjugation. The
eight meson fields are pseudoscalars. The neutral pion and
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Here �gL; gR� is in 
SU�3� � SU�3�� and  L;R represent the
chiral components of the quark fields, with flavor indices
understood. This symmetry is expected to break sponta-
neously to a vector SU(3) via a vacuum expectation value
for  L R. This motivates the sigma model through the
identification

h0j L Rj0i $ v�: (5)

The quantity v characterizes the strength of the sponta-
neous breaking. The effective field transforms under the
chiral symmetry as

� ! gyL�gR: (6)

Equation (2) represents the simplest nontrivial expression
invariant under this symmetry.

Quark masses break the chiral symmetry explicitly.
These are introduced through a three by three mass
matrix M appearing in an added potential term

L � L0 � vReTr��M�: (7)

Here v is the same dimensionful factor appearing in
Eq. (5). The chiral symmetry of our starting theory shows
the physical equivalence of a given mass matrix M with a
rotated matrix gyRMgL. Using this freedom to put the
mass matrix into a standard form, I take it as diagonal
201601-2
with increasing eigenvalues

M �

0
@
mu 0 0
0 md 0
0 0 ms

1
A (8)

representing the up, down, and strange quark masses.
In general the mass matrix can still be complex. The

chiral symmetry allows one to move phases between the
masses, but the determinant of M is invariant. Under
charge conjugation the mass term would be invariant
only if M � M	. If jMj is not real, then its phase is the
famous CP violating parameter usually associated with
topological structure in the gauge fields. Here I take all
quark masses as real. Since I am looking for spontaneous
symmetry breaking, I consider the case where there is no
explicit CP violation.

Expanding the mass term quadratically in the meson
fields generates the effective mass matrix for the eight
mesons

M �� / ReTr����M: (9)

The isospin-breaking up-down mass difference plays a
crucial role in the later discussion. This gives this matrix
an off diagonal piece mixing the �0 and the �,

M 3;8 / mu �md: (10)

The eigenvalues of M give the standard mass relations
m2
��

� m2
��

/ mu �md; m2
K�

� m2
K�

/ mu �ms; m2
K0

� m2
K0

/ md �ms;

m2
�0

/ 2
3�mu �md �ms �

���������������������������������������������������������������������������������������
m2
u �m2

d �m2
s �mumd �mums �mdms

q
�;

m2
� / 2

3�mu �md �ms �
���������������������������������������������������������������������������������������
m2
u �m2

d �m2
s �mumd �mums �mdms

q
�:

(11)
Here I label the mesons with their conventional names.
From these relations, ratios of meson masses give esti-
mates for the ratios of the quark masses [7–9].

So far all this is standard. Now I vary the quark masses
and look for interesting phenomena. In particular, I want
to find spontaneous breaking of the CP symmetry.
Normally the � field fluctuates around the identity in
SU(3). However, for some values of the quark masses
this ceases to be true. When the vacuum expectation of
� deviates from the identity, some of the meson fields
acquire expectation values. As they are pseudoscalars,
this necessarily involves a breakdown of parity, as noted
by Dashen [1].

To explore this possibility, concentrate on the lightest
meson from Eq. (11), the �0. From Eq. (11) one can
calculate the product of the �0 and � masses

m2
�0
m2
� / mumd �mums �mdms: (12)

The �0 mass vanishes whenever

mu �
�msmd

ms �md
: (13)
For increasingly negative up-quark masses, the expansion
around vanishing pseudoscalar meson fields fails. The
vacuum is no longer approximated by fluctuations of �
around the unit matrix; instead it fluctuates about an
SU(3) matrix of form

� �

0
@
ei�1 0 0
0 ei�2 0
0 0 e�i�1�i�2

1
A ; (14)

where the phases satisfy

mu sin��1� � md sin��2� � �ms sin��1 ��2�: (15)

There are two minimum action solutions, differing by
flipping the signs of these angles. The transition is a
continuous one, with � going smoothly to the identity
on approaching the boundary in Eq. (13). The magnitude
of these angles controls the magnitude of the resulting CP
violation.

In the new vacuum the neutral pseudoscalar meson
fields acquire expectation values. As they are CP odd,
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this symmetry is spontaneously broken. This has various
experimental consequences; for example, eta decay into
two pions becomes allowed since a virtual third pion can
be absorbed by the vacuum. Figure 1 sketches the inferred
phase diagram as a function of the up- and down-quark
masses.

Chiral rotations ensure a symmetry under the flipping
of the signs of both quark masses. This produces a distinct
CP conserving phase. When the magnitudes of both the
up- and down-quark masses exceed the strange quark
mass, two additional CP conserving phases are found.
The figure indicates the values of � around which the
vacua fluctuate for the four respective CP conserving
phases.

The asymptotes of the boundaries of the CP violating
region are determined by the strange quark mass. If the
strange quark mass is taken to a large value, then this
scale will instead be controlled by the strong interaction
scale.

At first sight the appearance of the CP violating phase
at negative up-quark mass may seem surprising. Naively
in perturbation theory the sign of a fermion mass can be
rotated away by a redefinition  ! �5 . However, this
rotation is anomalous, making the sign of the quark mass
observable. A more general complex phase in the mass
would also have physical consequences, i.e., explicit
CP violation. With real quark masses the underlying
CP

CP

−1  0  0
0 −1  0
0  0  1

( )∼ Σ
 1  0  0
0 −1  0
0  0 −1( )∼ Σ

−1  0  0
0  1  0
0  0 −1( )∼ Σ

m

m

u

d

−ms

0  0  1
( )∼ Σ

 1  0  0
0  1  0

−ms

FIG. 1 (color online). The schematic phase diagram of quark-
gluon dynamics as a function of the two lightest quark masses.
The shaded regions exhibit spontaneous CP breaking. On the
diagonal line with mu � md there are three degenerate pions
due to isospin symmetry. The neutral pion mass vanishes on the
boundary of the CP violating phase. The asymptotes of the
boundaries are given by the strange quark mass. In the CP
conserving phases, the vacuum fluctuates about the indicated
values for �.
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Lagrangian is CP invariant, but the above discussion
shows that there exists a large region where the ground
state spontaneously breaks this symmetry.

Vafa and Witten [10] argued on rather general condi-
tions that CP could not be spontaneously broken in the
strong interactions. However, their argument makes pos-
itivity assumptions on the path integral measure. When a
quark mass is negative, the fermion determinant need not
be positive for all gauge configurations; in this case their
assumptions fail. Azcoiti and Galante [11] have also
criticized the generality of the Vafa and Witten result.

The possible existence of this phase was anticipated
some time ago on the lattice by Aoki [12]. For the one
flavor case he found this parity breaking phase with
Wilson lattice gauge fermions. He went on to discuss
also two flavors, finding both flavor and parity symmetry
breaking. The latter case is now regarded as a lattice
artifact. The chiral breaking terms in the Wilson action
open up the CP violating phase for a finite region along
mu � md line. For a review of these issues, see Ref. [13].

In conventional discussions of CP noninvariance in the
strong interactions [14] appears a complex phase ei� ap-
pearing on tunneling between topologically distinct
gauge field configurations. The famous U(1) anomaly
formally allows moving this phase into the determinant
of the quark mass matrix. Rotating all phases into the up-
quark mass shows that the spontaneous breaking of CP is
occurring at an angle � � �. Note that when the down-
quark mass is positive, the CP violating phase does not
appear for up-quark masses greater than a negative mini-
mum value. There exists a finite gap with � � � without
this symmetry breaking. The chiral model predicts a
smooth behavior in all physical processes as the up-quark
mass passes through zero.

An interesting special case occurs when the up and
down quarks have the same magnitude but opposite sign
for their masses, i.e., mu � �md. In this situation it is
illuminating to rotate the minus sign into the phase of the
strange quark. Then the up and down quarks are degen-
erate, and an exact vector SU(2) flavor symmetry is
restored. The spectrum will show three degenerate pions.

The above discussion was entirely in terms of the
pseudoscalar mesons that become Goldstone bosons in
the chiral limit. One might wonder how higher states can
influence this phase structure. Of particular concern is
the �0 meson associated with the anomalous U(1) sym-
metry present in the classical quark-gluon Lagrangian.
Nonperturbative processes, including topologically non-
trivial gauge field configurations, are well known to gen-
erate a mass for this particle. I now argue that, while this
state can shift masses due to mixing with the lighter
mesons, it does not make a qualitative difference in the
existence of a phase with spontaneous CP violation.

The easiest way to introduce the �0 into the effec-
tive theory is to promote the group element � to an
element of U(3) via an overall phase factor. Thus I
201601-3
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generalize Eq. (1) to

� � exp�i����=f� � i
��������
2=3

p
�0=f�� 2 U�3�: (16)

The factor
��������
2=3

p
gives the �0 field the same normalization

as the � fields. Our starting kinetic Lagrangian in Eq. (2)
would have this particle also be massless. One way to fix
this deficiency is to mimic the anomaly with a term
proportional to the determinant of �,

L0 �
f2�
4
Tr�@��y@��� � Cj�j: (17)

The parameter C parametrizes the strength of the anom-
aly in the U(1) factor.

On including the mass term exactly as before, addi-
tional mixing occurs between the �0, the �0, and the �.
The corresponding mixing matrix takes the form
0
BBB@

mu �md
mu�md��

3
p

��
2
3

q
�mu �md�

mu�md��
3

p mu�md�4ms
3

��
2

p
�mu�md�2ms�

3��
2
3

q
�mu �md�

��
2

p
�mu�md�2ms�

3
2
3ma

1
CCCA ; (18)

where ma characterizes the contribution of the nonper-
turbative physics to the �0 mass. This should have a value
of the order of the strong interaction scale; in particular, it
should be large compared to at least the up- and down-
quark masses. The two by two matrix in the upper left of
this expression is exactly what is diagonalized to find the
neutral pion and eta masses in Eq. (11).

The boundary of the CP violating phase occurs where
the determinant of this matrix vanishes. This modifies
Eq. (12) to

m2
�0
m2
�m

2
�0 / ma�mumd �mums �mdms�

�mu�md �ms�
2 �md�mu �ms�

2

�ms�mu �md�
2: (19)

The boundary shifts slightly from the earlier result but
still passes through the origin, leaving Fig. 1 qualitatively
unchanged.

While I have been exploring rather unphysical regions
in parameter space, these observations do raise some
wider issues. For practical lattice calculations of hadronic
physics, current simulations are done at relatively heavy
values for the quark masses. This is because the known
fermion algorithms tend to converge rather slowly at light
quark masses. Extrapolations by several tens of MeV are
needed to reach physical quark masses, and these extrap-
olations tend to be made in the context of chiral pertur-
bation theory. While certainly not a proof of a problem,
the presence of a CP violating phase quite near the
physical values for the quark masses suggests strong
variations in the vacuum state with rather small changes
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in the up-quark mass; indeed, less than a 10 MeV change
in the traditionally determined up-quark mass can dras-
tically change the low energy spectrum. Most simulations
consider degenerate quarks, and chiral extrapolations so
far have been quite successful. But some quantities,
namely, certain baryonic properties [15], do seem to
require rather strong variations as the chiral limit is
approached. These effects and the strong dependence on
the up-quark mass may be related.

Another worrying issue is the validity of current simu-
lation algorithms with nondegenerate quarks. With an
even number of degenerate flavors the fermion determi-
nant is positive and can contribute to a measure for Monte
Carlo simulations. With light nondegenerate quarks the
positivity of this determinant is not guaranteed. Indeed,
the CP violation can occur only when the fermions con-
tribute large phases to the path integral. Current algo-
rithms for dealing with nondegenerate quarks [16] take a
root of the determinant with multiple flavors. In this
process any possible phases are ignored. Such an algo-
rithm is incapable of seeing the CP violating phenomena
discussed here. This point may not be too serious in
practice since the up and down quarks are nearly degen-
erate and the strange quark is fairly heavy. Again this is
not a proof, but these issues should serve as a warning that
things might not work as well as desired.
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