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Annihilation radiation from neutralino dark matter at the Galactic center (GC) would be greatly
enhanced if the dark matter were strongly clustered around the supermassive black hole (SBH). The
existence of a dark matter ‘‘spike’’ is made plausible by the observed, steeply rising stellar density near
the GC SBH. Here the time-dependent equations describing gravitational interaction of the dark matter
with the stars are solved. Scattering of dark matter particles by stars would substantially lower the
dark matter density near the GC SBH over 10 Gyr, due both to kinetic heating and to capture of dark
matter particles by the SBH. This evolution implies a decrease by several orders of magnitude in the
observable flux of annihilation products compared with models that associate a steep, dark matter spike
with the SBH.
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matter via gravitational scattering [13,14]. Here, the time-
dependent equations describing the scattering of dark

after the dark matter spike forms, the local heating time
becomes
Neutralinos in supersymmetry are likely candidates for
the nonbaryonic dark matter [1,2]. If neutralinos make up
a large fraction of the dark matter in the Galactic halo,
pair annihilations will produce an excess of photons
which may be observed in gamma ray detectors [3].
The Galactic center (GC) is a promising target for such
searches, since the dark matter density is predicted to rise
as �� r�1 at the centers of dark matter halos [4]. In
addition, the GC contains a supermassive black hole
(SBH) with mass M� � 106:5M� [5].‘‘Adiabatic growth’’
models, in which the SBH remains stationary as it grows,
predict the formation of a steep power-law density profile
around the SBH, a ‘‘spike,’’ and an increase by many
orders of magnitude in the amplitude of the neutralino
annihilation signal [6].

The bulges of galaxies like the Milky Way are believed
to have formed via mergers of preexisting stellar systems.
If the latter contained SBHs, a merger would result in
the formation of a binary SBH [7]. The density of stars
and dark matter around a binary SBH drops rapidly as the
binary ejects matter via the gravitational slingshot [8].

Evidence for the scouring effect of binary SBHs is seen
at the centers of the brightest galaxies [9,10], where the
stellar density profiles are nearly flat and sometimes even
exhibit a central minimum [11]. However, in fainter
elliptical galaxies and in the bulges of spiral galaxies
like the Milky Way, steeply rising stellar densities are
observed: �? � r��; 1:5 & � & 2:5. In these galaxies, the
most recent mergers may have taken place before the era
in which SBHs formed, allowing the stellar density near
the SBH to remain high. Since stars and dark matter
respond similarly to the presence of a SBH, galaxies
with steeply rising stellar densities are the most plausible
sites for steeply rising dark matter densities and hence for
the detection of annihilation radiation [12].

Stars near the SBH would also interact with the dark
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matter particles off of stars in the presence of a SBH
are solved. Scattering decreases the density of a dark
matter spike by kinetic heating, and by driving particles
into the SBH. The result, after 10 Gyr, is the virtual
dissolution of the dark matter spike in a galaxy like the
Milky Way. This result suggests that enhancements in the
dark matter density around the GC SBH would be modest
whether or not the Milky Way bulge has experienced the
scouring effects of a binary SBH.

Let rh be the radius of gravitational influence of the
SBH, with M��r < rh� 	 2M�. For the GC SBH, rh �
1:67 pc [15]. After growth of the SBH (assumed to remain
fixed with respect to the bulge), the dark matter density is
approximately

��r� 	 ��rb� 
 �r=rb�
��sp ; r & rb (1a)


 �r=rb�
��c; r * rb; (1b)

where �sp 	 2 � 1=�4 � �c�, � / r��c is the dark matter
density before growth of the SBH, and rb � 0:2rh [16].

An estimate of the local heating rate of dark matter
particles due to gravitational encounters with stars is the
change per unit time of  	 1

2mv
2
rms, the mean kinetic

energy of the dark matter particles. Assuming Max-
wellian velocity distributions for the stars and dark
matter,

d
dt

	
8�6��1=2G2�?m ln�

�v2
rms � v2

?;rms�
3=2

�? � �; (2)

where ? 	 1
2m?v

2
?;rms, �? is the stellar mass density, and

ln� is the Coulomb logarithm [17]. Taking the limit
m m? and assuming vrms � v?;rms, appropriate shortly
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the latter expression uses the observed stellar mass den-
sity near the GC SBH, �? � 3:2 
 105M�pc�3�r=1pc���,
� 	 1:4 � 0:1 [15], and v?;rms � 1:12�GM�=r�

1=2, with
M� 	 3 
 106M�. The Coulomb logarithm was set to
ln� 	 ln�0:4N�, with N � 6 
 106 the number of stars
within rh [18]. The time to heat the dark matter is nearly
independent of radius and shorter by a factor �5 than the
age (�10 Gyr; [19]) of the stellar bulge.

The change with time of the dark matter density can be
computed from the Fokker-Planck equation describing
the evolution of f�r; v; t�, the mass density of dark matter
particles in phase space, due to gravitational interactions
with stars [20]. We assume that f is isotropic in velocity
space, f 	 f�E; t�, with E � �v2=2 ���r� the binding
energy per unit mass of a dark matter particle, and
��r� 	 ���r�, with ��r� the gravitational potential due
to the SBH and the stars. The kinetic equation describing
the evolution of f�E; t� due to scattering off of stars with
masses � m is

4�2p�E�
@f�E; t�
@t

	�
@FE
@E

� Flc�E; t�; (4a)

FE�E; t� 	 �DEE�E�
@f
@E

; (4b)

DEE�E� 	 64�4G2 ln�
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�1
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�
Z 1
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dE0q�E0�h?�E

0�

#
: (4c)

Here p�E� 	 4
���
2

p Rrmax�E�
0 drr2

��������������������
��r� � E

p
	 �@q=@E is

the phase space volume accessible per unit of energy,
with ��rmax� 	 E. The dark matter heating rate is
determined by h?�E� 	

R
m?f?�E;m?�dm?, with

f?�E;m?�dm? the mass density of stars in phase space
in the interval m? to m? � dm?. If the distribution
n�m?�dm? of stellar masses is assumed independent of
energy (i.e., distance from the black hole), then h?�E� 	
~mm?f?�E�, with f?�E� the total mass density of stars in
phase space and

~mm? 	

R
n�m?�m

2
?dm?R

n�m?�m?dm?
: (5)

Flc�E� is the flux of stars that are scattered from low
angular momentum orbits into the SBH and is discussed
in more detail below. Equations (4) assume that small-
angle scatterings dominate the evolution of f and that the
gravitational potential changes on a time scale long com-
pared with Tlocal.

Neglecting Flc, the total energy E 	
RE2
E1
N�E�EdE of

dark matter particles in the energy range E1 <E< E2
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changes with time according to

dE
dt

	�
Z E2

E1

dEE
@FE
@E

(6a)

	��EFE�
E2
E1

� �fDEE�
E2
E1
� (6b)Z E2

E1

dEN�E�Q�E�; (6c)

Q�E� 	 16�2G2 ~mm? ln�
Z E

0
dE0f?�E

0�: (6d)

The third term in Eq. (6c), which is always negative,
represents heating of the dark matter. We, accordingly,
define the (nonlocal) time scale for heating of the dark
matter particles to be

T�1
heat �

RE2
E1
dEN�E�Q�E�RE2
E1
dEEN�E�

: (7)

This expression may be used to estimate the dissolution
time of a dark matter spike. Assume that both stars and
dark matter particles initially have power-law density
profiles near the SBH: ��r; t 	 0� / r��sp , �?�r� / r��,
r & rh, and that ��r� 	 GM�=r. The isotropic distribu-
tion function corresponding to an r�� density profile in
an r�1 potential is f�E� / E��3=2. Setting E1 	 ��rh� 	
GM�=rh and E2 ! 1, Theat becomes

Theat 	 A��; �sp�
M�

~mm?

�
GM�

r3
h

�
�1=2 1

ln�
; (8a)
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1

2

����
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��� 1=2��7=2 � �� �sp�

�3 � ���2 � �sp�

���� 1=2�

���� 1�
:

(8b)

When � 	 3=2, equal within the uncertainties with the
slope of the stellar cusp around the Milky Way SBH [15],
the coefficient A��; �sp� in Eqs. (8) is independent of �sp

and
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4
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3

p
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The effective stellar mass ~mm? that appears in Eq. (9a)
depends, via Eq. (5), on the mass function n�m?� of stars
in the GC stellar cusp. While n�m?� is not strongly con-
strained by observations, either at the high or low mass
ends, it is sometimes assumed (e.g., [15]) to be a power
law with Salpeter [21] index, n�m?� / m

��1�"�," � 1:35.
Settingm?;min 	 0:08M� andm?;max 	 �5�10�20�M� then
yields ~mm? � �0:8�1:2�1:8�M�.

We take Theat as defined in Eqs. (9) as our unit of time
in what follows, with # � t=Theat. The age of the majority
of the stars near the GC is * 10 Gyr [19], although some
201304-2
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much younger (t & 107 yr) stars are present in the cusp
at distances &0:1 pc from the SBH [22,23]. Setting
t 	 10 Gyr, rh 	 1:67 pc, and 1 � ~mm?=M� � 2 gives
10 & # & 20. If the young stellar population is continu-
ally replenished, m? and # could be larger, implying a
higher mean rate of dark matter heating.

Diffusion in energy will cause a modest loss of stars to
the SBH, _MM 	 �FE�E2�, with E2 � c2. A much greater
capture rate is implied by scattering of dark matter par-
ticles on low angular momentum (eccentric) orbits into
the SBH [24]. The loss rate is given approximately by [25]

Flc�E� � 4�2P�E�J2
c�E�&�E�R

@f
@R

(10a)

� S�E�f�E�; (10b)

S�E� 	 4�2P�E�J2
c�E�&�E��lnR0�E��1��1: (10c)

Here R � J2=J2
c�E� is a scaled angular momentum vari-

able, with Jc�E� the angular momentum of a circular orbit
of energy E; P is the period of a radial orbit; & is the
orbit-averaged angular momentum diffusion coefficient
h�!R�2i=2R; R0 is the value of the angular momentum
FIG. 1. Evolution of the dark matter phase space density f�E�
and mass density ��r� due to gravitational interactions with
stars around the GC SBH. The initial dark matter density is
given by Eqs. (1), with �sp 	 7=3 and �c 	 1. Times shown are
# 	 0 (thick curves) and # 	 2; 4; :::; 20, where # is the time in
units of Theat [Eq. (5)]; 10 � # � 20 corresponds roughly to the
age of the Galactic bulge.
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variable at which f drops to zero due to the competing
effects of capture and diffusion. The final line of Eqs. (10)
assumes f� ln�R=R0�E�� near the loss cone [25,26].
Cohn and Kulsrud [26] give expressions for R0 as a func-
tion of E based on solutions to the R-dependent Fokker-
Planck equation; we adopt their expressions here. The
angular momentum diffusion coefficients used by these
authors, for modeling systems containing a single stellar
mass, may be shown to remain unchanged when the
scattered objects (here dark matter) have masses much
less that those of the scatterers (stars). The rate of the loss
of stars predicted by Eqs. (10) depends only weakly on the
radius of the capturing sphere, which we set to 2GM�=c2.
The diffusion coefficient & is of the order T�1

heat, hence
Flc�E� � N�E�=Theat�E� lnR�1

0 .
The detailed evolution of the dark matter density

around the GC SBH was computed by integrating
Eq. (4a) forward in time. The stellar density was modeled
via Dehnen’s [27] density law, �?�r� / �r=r0�

���1 �
r=r0�

��4, with � 	 1:4 and r0 chosen to match the ob-
served stellar density at r & rh [15]. Figure 1 shows the
evolution of the dark matter density assuming �sp 	 7=3
and �c 	 1, the values corresponding to a spike that
developed in response to adiabatic growth of a SBH in
a dark matter halo with �c 	 1:0. Figure 1 shows that
scattering of dark matter particles by stars causes the
dark matter density to drop and the spike to flatten,
within a radius �rh where the heating time is shorter
than the age of the bulge. Figure 2 shows the dark matter
density at # 	 10 for a range of initial spike profiles,
1:0 � �sp � 2:75. The mean density within rh drops by
several orders of magnitude when �sp � 2.

In the absence of scattering into the SBH, Eqs. (4) have
the time-independent solution f�E� 	 constant, ��
r�3=2 [14]. As Figs. 1 and 2 show, there is a tendency
to evolve toward this characteristic profile, although a
FIG. 2. Dark matter density at # 	 0 (dotted lines) and # 	
10 (solid lines) given an initial density that satisfies Eqs. (1),
with �c 	 1 and �sp 	 �1:00; 1:50; 1:75; 2:00; 2:25; 2:50; 2:75�.
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FIG. 3. Evolution of hJi, a dimensionless measure of the
cuspiness of the dark matter spike [Eq. (11)], for two values
of the solid angle !$ of a detector centered on the SBH. Curves
are shown for �sp 	 1:50 (lower), 1.75, 2.00, 2.25, 2.50, and
2.75 (upper). The dark matter density was normalized to an
initial value of 100M� pc�3 at r 	 rh; hJi scales as �2�rh�.
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number of factors keep it from being precisely reached,
including the finite evolution time: the presence of the
loss term Flc and the fact that f 	 constant can only hold
true over a finite range of energies given the boundary
conditions on f. Nevertheless, at late times (# * 20), the
solutions found here are generally well described by ��
r�3=2 at radii 10�5 & r=rh & 10�2.

The flux of dark matter annihilation photons along a
direction that makes an angle  with respect to the GC is
proportional to the line-of-sight integral

R
 �

2dl. Fol-
lowing earlier authors [3], we define the dimensionless
form factor J� � � K

R
 �

2�l�dl, K�1 	 �8:5 kpc� 

�0:3 GeV=cm3�. Given a photon detector with angular
acceptance !$ directed toward the GC, the signal is
proportional to

hJi �
1

!$

Z
!$

J� �d$: (11)

Figure 3 shows the evolution of hJi for !$ 	
10�5�10�3� sr; the first value is the approximate solid
angle of the detectors in GLAST [28] and in atmospheric
Cerenkov telescopes like VERITAS [29], while the larger
angle corresponds approximately to EGRET [30]. The
dark matter density was normalized to a fiducial value
of � 	 100M� pc�3 at r 	 rh; J and hJi scale as �2�rh�.
We note that ��rh� is uncertain and could be much lower
[8,31,32]. Figure 3 shows that the very large initial values
201304-4
of hJi are rapidly diminished as the spike is dissolved; by
# 	 10, hJi has dropped below ��104; 103�, !$ 	
�10�5; 10�3� for all �sp & 2:5. These values are similar
to what would be predicted for the central regions of a
dark matter halo in the absence of a SBH [3].
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