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Euclidean quantum gravity is studied with renormalization group methods. Analytical results for a
nontrivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameters in the
Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
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point [7,11,12], which is stable under the inclusion of
dimensions in that the couplings have turned into
scale-dependent functions. Denoting 	GG and 	�� the
Classical general relativity is acknowledged as the
theory of gravitational interactions for distances suffi-
ciently large compared to the Planck length. At smaller
length scales, quantum effects are expected to become
important. The quantization of general relativity, how-
ever, still poses problems. It has long been known that
quantum gravity is perturbatively nonrenormalizable,
meaning that an infinite number of parameters have to
be fixed to renormalize standard perturbation theory. It
has been suggested that Einstein gravity may be non-
perturbatively renormalizable, a scenario known as
asymptotic safety [1]. This requires the existence of a
nontrivial ultraviolet fixed point with at most a finite
number of unstable directions. Then it would suffice to
adjust a finite number of parameters, ideally taken from
experiment, to make the theory asymptotically safe.
Nonperturbative renormalizability has already been es-
tablished for a number of field theories [2].

The search for fixed points in quantum field theory
calls for a renormalization group study. A particularly
useful approach is given by the Exact Renormalization
Group, based on the integrating out of momentum modes
from a path integral representation of the theory [3]. The
strength of the method is its flexibility when it comes to
approximations. General optimization procedures are
available [4], increasing the domain of validity and the
convergence of the flow. Consequently, the reliability of
results based on optimized flows is enhanced [5].

Explicit flow equations for Euclidean quantum gravity
have been constructed by Reuter [6], using background
field techniques [6–8]. Diffeomorphism invariance under
local coordinate transformations is controlled by modi-
fied Ward identities, similar to those known for non-
Abelian gauge theories [9]. In general, methods originally
developed for gauge theories [10], with minor modifica-
tions, can now be applied to quantum gravity.

So far most studies have been concerned with the
Einstein-Hilbert truncation based on the operators

���
g

p

and
���
g

p
R�g� in the effective action, where g is the deter-

minant of the metric tensor g�� and R�g� the Ricci scalar.
In four dimensions, the high energy behavior of quantum
gravity is dominated by a nontrivial ultraviolet fixed
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R2�g� interactions [8] or noninteracting matter fields
[13]. Further indications for the existence of a fixed point
are based on dimensionally reduced theories [14] and on
numerical studies within simplicial gravity [15]. For phe-
nomenological applications, see [16].

In this Letter, we study fixed points of quantum gravity
in the approach put forward in [6], amended by an ade-
quate optimization [4,5]. The main new result is the
existence of a nontrivial ultraviolet fixed point in the
Einstein-Hilbert truncation in dimensions higher than
4, a region which previously has not been accessible.
Analytical results for the flow and its fixed points are
given for arbitrary dimension. The optimization ensures
the maximal reliability of the result in the present trun-
cation, thereby strengthening earlier findings in four di-
mensions. Implications of these results are discussed.

The Exact Renormalization Group is based on a mo-
mentum cutoff for the propagating degrees of freedom
and describes the change of the scale-dependent effective
action �k under an infinitesimal change of the cutoff scale
k. Thereby it interpolates between a microscopic action in
the ultraviolet and the full quantum effective action in the
infrared, where the cutoff is removed. In its modern
formulation, the renormalization group flow of �k with
the logarithmic scale parameter t � lnk is given by

@t�k �
1
2Tr��

�2�
k � R��1@tR: (1)

The trace stands for a sum over indices and a loop
integration, and R (not to be confused with the Ricci
scalar) is an appropriately defined momentum cutoff at
the momentum scale q2 � k2. For quantum gravity, we
consider the flow (1) for �k�g��	 in the Einstein-Hilbert
truncation, retaining the volume element and the Ricci
scalar as independent operators. Apart from a classical
gauge fixing, the effective action is given by

�k �
1

16
Gk

Z
ddx

���
g

p
��R�g� � 2 	��k	: (2)

In (2) we introduced the gravitational coupling constant
Gk and the cosmological constant 	��k. The ansatz (2)
differs from the Einstein-Hilbert action in d Euclidean
2004 The American Physical Society 201301-1
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FIG. 1 (color online). Running of couplings according to (6)
and (8).
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unrenormalized Newtonian coupling and cosmological
constant at some reference scale k � 
, and ZN;k the
wave function renormalization factor for the Newtonian
coupling, we introduce dimensionless renormalized cou-
plings as

gk � kd�2Gk 
 kd�2Z�1
N;k

	GG; �k � k�2 	��k: (3)

Their flows follow from (1) by an appropriate projection
onto the operators in (2). A scaling solution of the flow (1)
in the truncation (2) corresponds to fixed points for the
couplings (3).

Explicit momentum cutoffs have been provided for the
fluctuations in the metric field in the Feynman gauge [6]
and for its component fields in a traceless transverse
decomposition in a harmonic background field gauge
with the gauge fixing parameter � [7]. In either case the
tensor structure of the regulator is fixed, while the scalar
part is left free. Here, we employ the optimized cutoff
Ropt � �k2 � q2� ��k2 � q2� for the scalar part [4,5]. In
the setup (1)–(3), we have computed the flow equation for
arbitrary � and arbitrary dimension. To simplify the
notation, a factor 1=� is absorbed into the definition
(3). Below we present explicit formulas only for the limit
� ! 1 where the results take their simplest form. The
general case is discussed elsewhere. The � functions are

�� 
 @t� �
P1

P2 � 4�d� 2�g
;

�g 
 @tg � �d� 2� ��g �
�d� 2�gP2

P2 � 4�d� 2�g
;

(4)

with polynomials P1;2��; g; d�,

P1 ��16�3 � 4�2�4� 10dg� 3d2g� d3g�

� 4��10dg� d2g� d3g� 1�

� d�2� d��d� 16g� 8dg� 3�g;

P2 � 8��2 � �� dg� � 2:

A numerical factor cd � ��d2 � 2��4
�d=2�1 originating
mainly from the momentum trace in (1) is scaled into
the gravitational coupling g ! g=cd, unless indicated
otherwise. The graviton anomalous dimension is given by

� �
�d� 2��d� 2�g

�d� 2�g� 2��� 1
2�
2
: (5)

It vanishes for vanishing gravitational coupling, in two
and minus two dimensions, or for diverging �. On a
nontrivial fixed point the vanishing of �g implies �
 �
2� d and reflects the fact that the gravitational coupling
is dimensionless in 2d. This behavior leads to modifica-
tions of the graviton propagator at large momenta, e.g.,
[7]. The flows (4) are finite except on the boundary
gbound��� 
 �2�� 1�2=�2d� 4� derived from 1=� � 0.
It signals a breakdown of the truncation (2). Some trajec-
tories terminate at g � gbound. The boundary is irrelevant
as soon as the couplings enter the domain of canonical
scaling: the limit of large j�j implies that �� � �2� and
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�g � �d� 2�g modulo subleading corrections. This en-
tails � � 0. Then the flow is trivially solved by gk �
g
�k=
�d�2 and �k � �
�k=
��2, the canonical scaling
of the couplings as implied by (3). Here, 
 denotes the
momentum scale where the canonical scaling regime is
reached. In the infrared limit g=gbound��� � �k=
�d�2

becomes increasingly small for any dimension.
In the remaining part, we discuss the fixed points of (4)

and their implications. A first understanding is achieved
in the limit of vanishing cosmological constant, where

�g �
�1� 4dg��d� 2�g
1� 2�2� d�g

: (6)

The flow (6) displays two fixed points: the Gaussian one at
g � 0 and a non-Gaussian one at g
 � 1=�4d�. In the
vicinity of the nontrivial fixed point for large k, the
gravitational coupling behaves as Gk � g
=k

d�2. This
behavior is similar to asymptotic freedom in Yang-
Mills theories. The anomalous dimension of the graviton
(5) remains finite and � 0 for all g between the infrared
and the ultraviolet fixed point, because gk � g
 <
gbound�0� for all d > �2 and g
 � g
. At the fixed point,
universal observables are the eigenvalues of the stability
matrix at criticality, i.e., the critical exponents. The uni-
versal eigenvalue � is given by @�g=@gj
 � ��. We find

�G � 2� d; �NG � 2d
d� 2

d� 2
(7)

for the Gaussian (G) and the non-Gaussian (NG) fixed
points, respectively. The eigenvalues at criticality have
opposite signs, the Gaussian one being infrared attractive
and the non-Gaussian one being ultraviolet attractive.
They are degenerate in two dimensions. Away from the
fixed points, the flow (6) can be solved analytically for
arbitrary scales k. With the initial condition g
 at k � 
,
the solution gk for any k is�

gk
g


�
�1=�G

�
g
 � gk
g
 � g


�
�1=�NG

�
k


: (8)

Figure 1 shows the crossover from the infrared to the
ultraviolet fixed point in the analytic solution (8) in four
201301-2
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FIG. 2 (color online). The separatrix in four dimensions.
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dimensions (and with c4 in g reinserted). The corre-
sponding crossover momentum scale is associated with
the Planck mass, MPl � �G��1=2. More generally, (8) is a
solution at � � 0 for an arbitrary gauge fixing parameter
and a regulator. In these cases, the exponents � and the
fixed point g
 turn into functions of the latter. It is
reassuring that the eigenvalues display only a mild de-
pendence on these parameters.

Now we proceed to the nontrivial fixed points implied
by the simultaneous vanishing of �g and ��, given in (3).
A first consequence of P2 � 0 is g
 � ��
 �

1
2�
2=d,

which, when inserted into P1=g
 � 0, reduces the fixed
point condition to a quadratic equation with two real
solutions ��
; g
� � 0 as long as d � d�, where d� �
1
2 �1�

������
17

p
�. The two branches of fixed points are charac-

terized by �
 being larger or smaller than 1
2 . The branch

with �
 �
1
2 displays an unphysical singularity at four

dimensions and is therefore discarded. Hence,

�
 �
d2 � d� 4�

��������������������������������
2d�d2 � d� 4�

p
2�d� 4��d� 1�

;

g
 �
2��d2 � 2��4
�d=2�1

d2 � d� 4
�2

:

(9)

In (9), we have reinserted the numerical factor cd. The
solutions (9) are continuous and well defined for all d �
d� � 2:56 and become complex for lower dimensions.
The critical exponents associated with (9) are derived
from the stability matrix at criticality. In the most inter-
esting case d � 4, the two eigenvalues are a complex
conjugate pair �� 
 �0 � i�00 � �5� i

��������
167

p
�=3, or

�0 � 1:667; �00 � 4:308: (10)

The eigenvalues remain complex for all dimensions
2:56< d< 21:4. In d � 4, and for the general gauge
fixing parameter, the eigenvalues vary between �0 �
1:5–2 and �00 � 2:5–4:3. The range of variation serves
as an indicator for the self-consistency of (2). The result
(10) and the variation with � agree well with earlier
findings based on other regulators [7,11]. In the approxi-
mation (6), which does not admit complex eigenvalues,
the ultraviolet eigenvalue reads �NG � 8=3 in 4d. Both
�NG and �0 agree reasonably well with the critical eigen-
value � � 3 detected within a numerical study of 4d
simplicial gravity with fixed cosmological constant [15].
In view of the conceptual differences between the nu-
merical analysis of [15] and the present approach, the
precise relationship between these findings requires fur-
ther clarification. Still, the qualitative agreement is very
encouraging.

Next, we discuss the main characteristics of the phase
portrait defined through (4). Finiteness of the flow im-
plies that the line 1=� � 0 cannot be crossed. Slowness of
the flow implies that the line � � 0 cannot be crossed
either: in its vicinity, the running of g is �g � �d� 2�g�
O�g2�, and the gravitational coupling approaches g � 0
without ever reaching (or crossing) it for any scale k.
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Thus, disconnected regions of renormalization group
trajectories are characterized by whether g is larger or
smaller gbound and by the sign of g. Since � changes sign
only across the lines � � 0 or 1=� � 0, we conclude that
the graviton anomalous dimension has the same sign
along any trajectory. In the physical domain which in-
cludes the ultraviolet and the infrared fixed points, the
gravitational coupling is positive and the anomalous di-
mension negative. In turn, the cosmological constant may
change sign on trajectories emanating from the ultraviolet
fixed point. Some trajectories terminate at the boundary
gbound���, linked to the present truncation (cf. Fig. 2). The
two fixed points are connected by a separatrix. In Fig. 2,
it has been given explicitly in four dimensions (with the
factor c4 in g reinstalled). Integrating the flow starting in
the vicinity of the ultraviolet fixed point and fine-tuning
the initial condition leads to the trajectory which runs
into the Gaussian fixed point. The rotation of the separa-
trix about the ultraviolet fixed point reflects the complex
nature of the eigenvalues (10). At k � MPl, the flow dis-
plays a crossover from ultraviolet dominated running to
infrared dominated running. For the running couplings
and � this behavior is displayed in Fig. 3. The nonvanish-
ing cosmological constant modifies the flow mainly in the
crossover region rather than in the ultraviolet. A similar
behavior is expected for operators beyond the truncation
(2). This is supported by the stability of the fixed point
under R2�g� corrections [8], and by the weak dependence
on the gauge fixing parameter. In the infrared limit, the
separatrix leads to a vanishing cosmological constant
	��k � �kk

2 ! 0. Therefore, it is interpreted as a phase
transition boundary between cosmologies with positive
or negative cosmological constant at large distances. This
picture agrees very well with numerical results for a
sharp cutoff flow [12], except for the location of the
line 1=� � 0 which is nonuniversal.

Finally, we note that the qualitative picture detailed
above persists in dimensions higher than 4. Therefore
quantum gravity in higher dimensions may well be for-
mulated as a fundamental theory. This consideration is
201301-3
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FIG. 3 (color online). Running of couplings along the
separatrix.
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also of interest for recent phenomenological scenarios
based on gravity in extra dimensions. In higher dimen-
sions, higher dimensional operators beyond the truncation
(2) are likely to be more relevant than in lower ones.
Consequently, the projection of the full flow onto the
Einstein-Hilbert truncation (2) and the respective domain
of validity are more sensitive to the cutoff. A first analysis
for specific cutoffs in d > 4 has revealed that the fixed
point exists up to some finite dimension, where �


reached the boundary of the domain of validity [12]. No
definite conclusion could be drawn for larger dimensions.
Based on an optimized flow, the main new result here is
that a nontrivial ultraviolet fixed point exists within the
domain of the validity of (4) for arbitrary dimension.
Furthermore, the fixed point is smoothly connected to
its 4d counterpart and shows only a weak dependence on
the gauge fixing parameter. In the limit of arbitrarily
large dimensions, this leads to �
 ! 1=2 and g
 !
cd=�2d2� in the explicit solution (9). Similar results are
obtained for an arbitrary gauge fixing parameter. Note
that �
 approaches its boundary value very slowly, in-
creasing from 1=4 to 0.4 for d ranging from 4 to 40. Using
(9) and the definition for gbound, we derive gbound��
�=
g
 � �2d�=�d� 2� at the fixed point. Hence, g
 stays clear
by at least a factor of 2 from the boundary where 1=�
vanishes, and the ultraviolet fixed point resides within the
domain of validity of (4) even in higher dimensions. This
stability of the fixed point also strengthens the result in
lower dimensions, including d � 4.

In summary, we have found analytic results for the flow
and a nontrivial ultraviolet attractive fixed point of quan-
tum gravity. Maximal reliability of the present truncation
is guaranteed by the underlying optimization. The fixed
point is remarkably stable with only a mild dependence on
the gauge fixing parameter. Furthermore, it extends to
dimensions higher than d � 4, a region which previously
has not been accessible. The qualitative structure of the
phase diagram in the Einstein-Hilbert truncation is
equally robust. In four dimensions the results match
201301-4
with earlier numerical findings based on different cutoffs.
Hence it is likely that the ultraviolet fixed point exists in
the full theory. We expect that the analytical form of the
flow, crucial for the present analysis, is equally useful in
extended truncations. If the above picture persists in these
cases, gravity is nonperturbatively renormalizable in the
sense of Weinberg’s asymptotic safety scenario.
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