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Dynamical Control of Macroscopic Quantum Tunneling
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We show that the quantum Zeno and anti-Zeno effects are realizable for macroscopic quantum
tunneling by current-bias modulation in Josephson junctions (and their analogs in atomic condensates).
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in (2), resulting in the time-dependent decay rate of
j�n�t�j2:

of a time-dependent tilt term and a sinusoidal ‘‘lattice’’
potential:
Frequent measurements of quantum states decaying
into an energy continuum can cause either slowdown of
the decay [the quantum Zeno effect (QZE)] [1,2] or,
conversely, its speedup [the anti-Zeno effect (AZE)]
[1,3–5]. Thus far, these effects have mainly been inves-
tigated in the context of microscopic systems (e.g., par-
ticles or atoms) [1–5]. Here we show that decay
modifications reminiscent of the QZE and AZE are real-
izable for macroscopic quantum states that couple to the
continuum via macroscopic quantum tunneling (MQT) in
a superconducting current-biased Josephson junction (JJ)
[6–9] or in its analogs in ultracold atomic condensates
[10]. To this end, we develop a generalized, comprehen-
sive theory of MQT through temporally modulated bar-
riers, which includes previous treatments [9,11] as special
cases. In contrast to previously discussed realizations of
the QZE and AZE by frequent measurements [2,3], the
effects predicted here are based upon small-amplitude
modulation of the bias current, which is the only viable
means of dynamical MQT control in a JJ.

To set our problem in its general context, consider a
system ruled by the Hamiltonian

H � H0 � ~VV�t�; ~VV�t� � ��t�
X
f

Vfnjfihnj � H:c: (1)

Here ~VV�t� is a perturbation that couples the initial state jni
only to eigenstates jfi of H0 with energies in the con-
tinuous spectrum, and ��t� expresses the time-dependent
modulation of the perturbation. Under these assumptions,
the probability amplitude �n�t� of the initial state jni
obeys (in the interaction representation) the following
exact integrodifferential equation [1]:

_�� n � �
Z t

0
dt0�
�t���t0�Gn�t� t0�ei!n�t�t0��n�t0�: (2)

Here the energy eigenvalue of jni is �h!n and Gn�t� �
�h�2

R
1
0 d!f��!f�jVfnj

2e�i!ft is the memory (correla-
tion) function of the coupling to the continuum, which
involves the density of continuum states ��!f�. For suffi-
ciently short times one may set �n�t0� � 1 in the integral
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Re

Z t

0
dt0

Z t0

0
dt00�
�t0���t00�

�Gn�t
0 � t00�ei!n�t0�t00�

� 2�
Z 1

�1
d!Ft�!�!n�Gn�!�; (3)

whereQ�t� �
R
t
0 d�j����j

2 is the effective time. In Eq. (3),
Rn�t� is the convolution of two spectral func-
tions: (i) Gn�!� � �h�2��!�jVfn�!�j2, the Fourier trans-
form of the continuum memory function Gn�t�, and
(ii) Ft�!� � j

R
t
0 ��t

0�ei!t
0
dt0j2, the spectral density of

the modulation function (normalized to 1). The universal
Eq. (3) [1] has much broader applicability than its golden
rule counterpart, RGR � 2�Gn�!n�, obtained by standard
perturbation theory [12]: Rn�t� may vary with the modu-
lation period �, obeying either the QZE or the AZE,
depending on whether � is shorter than the memory
(correlation) time �c [the time over which G�t� changes].

The foregoing results purport to be universal, but their
applicability to time-modulated tunneling to the contin-
uum is far from obvious, as detailed below. We shall
consider a low-temperature, nondissipative JJ (with neg-
ligible thermal effects) driven by time-dependent bias-
current Ib�t�. This system is adequately described by the
following Hamiltonian, in terms of the magnetic-flux
variable � [8]:

H�t� � �
�h2

2C
@2

@�2 � Ib�t��� EJ cos
2��
�0

; (4)

where C is the junction capacitance, EJ � �0Ic=2� is the
Josephson energy, �0 � �h=2e is the flux quantum, and
Ic is the critical current. This Hamiltonian is equivalent
to that of a fictitious particle of ‘‘mass’’ m � C and
‘‘momentum’’ p � �i �h@=@� moving along the coordi-
nate x � � in a tilted (washboard) potential, consisting
 2004 The American Physical Society 200403-1
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FIG. 1. Upper inset: tilted potential U�q� [Eq. (6)]; solid line:
maximal tilt, � � 1; dashed line: minimal tilt, � � 0 [Eq. (5)].
Lower inset: U (� � 0) is approximated by a binding potential
for energies below Um, since tunneling is negligible; U (� � 1)
is divided into the same binding potential and a perturbation
V < 0, allowing tunneling. Main figure: (a) The coupling
spectrum Gn�12�!� (in units of RGR=2�) and the modulation
function Ft�4�0 �!� (in units of !�1

0 ) multiplied by 2 with �1 �
1=!0 and �0 � 5�1, where !0 is the fundamental (harmonic)
oscillation frequency in the well. (b) Same, with Gn�15�!�,
�1 � 0:3=!0, �0 � 20�1, and Ft�4�0 �!� ( � 4).
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H�t� �
p2

2m
�ma�t�x�U0 cos2kLx;

a�t� � �aa� b��t�: (5)

Here the time-dependent ‘‘acceleration’’ is a�t� �
Ib�t�=C, U0 � EJ, and 2kL � 2�=�0. We shall assume
abrupt (steplike) changes of the tilt, causing the accel-
eration to periodically alternate between �aa� b (� � 1),
within time intervals of length �1, and �aa (� � 0), within
time intervals of length �0 � �1. This time dependence is
realizable in a JJ by rapid (on time scales & 0:1 ns) up-
down ramping of the bias current. For atomic Bose con-
densates trapped in optical lattices [10] we can turn the
tilt up and down by fast (&10 ps) modulation of the laser
intensity.

The Hamiltonian in Eq. (5) is analogous to that de-
scribing cold atoms in a repeatedly accelerated (tilted)
optical washboard potential, resulting in periodically
interrupted tunneling from a quasibound state to the
continuum [5]. The experiment in Ref. [5] has demon-
strated good agreement with Eq. (3) and has provided the
only convincing proof to date of both the QZE and AZE
in decay to a continuum.

We first address the basic query: can we cast the driven-
JJ HamiltonianH�t� in Eq. (5) into the universal form (1),
namely, separate it into H0, whose eigenstates are either
bound (i.e., have discrete energies) or unbound (with
energies in the continuum), and a time-dependent pertur-
bation ��t�V that couples bound and unbound states? In
this respect, we note the important differences between
the system in Ref. [5], characterized by a slightly tilted,
shallow sinusoidal potential supporting a single quasi-
bound band, and a biased JJ, describable by a strongly
tilted potential, characterized by a near-critical accelera-
tion (a & ac � 2kLU0=m) and supporting many bound
levels [6–9]. The sinusoidal potential in Eq. (5) can be
effectively replaced in a biased JJ by the cubic form
(Fig. 1, upper inset)

U�q� � �U0=6�q2�q0 � q�; (6)

whose maximum Um � �2=81�U0q3m is at qm � 2q0=3 ��������������������������
8�1� a=ac�

p
and q � 2kLx� �=2� qm=2. We shall

consider a quasibound level n localized in the well on
the left (around the minimum U � 0 at q � 0). In order
to cast the effective Hamiltonian (5) for such a quasi-
bound level [13] into the required form, we rewrite it as
follows:

H � ~HH0 � ��t�V;

~HH0 �
p2

2M
�U�q�'�qm � q� �Um'�q� qm�;

V � �U�q� �Um�'�q� qm�:

(7)

Here '� � is the Heaviside step function and the effective
mass is M � m=4k2L. In (7) we have artificially divided
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U�q� between ~HH0, whose eigenstates are strictly bound if
their energy �h!n < Um, and a potential V < 0 in the
time-modulated perturbation ��t�V. This perturbation
allows the particle to tunnel periodically from the bound
state to the unbound (continuum-energy) eigenstates ofH
whenever ��t� � 1 in Eq. (5). The suggested form (7)
conforms to Eq. (1) and thus answers the query above
(Fig. 1, insets).

Let us next raise another important query: are abrupt
changes of the tilt compatible with the assumption that
j�n�t�j2 evolves slowly enough, so as to warrant the use of
Eq. (3), or do they conform to the impulse (shock) ap-
proximation [11,12]? Under the constraint Rn�c � 1,
which implies that the (modified) decay rate Rn of level
n is slow on the memory (correlation) time scale of the
continuum, the approximation Eq. (3) should hold, at
least whenever the tilt is constant (either �aa or �aa� b).
We denote the corresponding survival probability by [1]
Pn�t�jmodul ’ e�RnT , where T � Q�t� [cf. (3)] is the total
time in the interval �0; t�, during which the tunneling is
switched on (� � 1). By contrast, the impulse (shock)
approximation should apply during the much shorter
ramping times �r � �1 if the sudden-change condition
holds [12]: The abrupt ramping of the tilt down and up
causes the higher-tilt (‘‘preshock’’) wave function
j ���

n �t�i to be projected onto its lower-tilt (‘‘postshock’’)

counterpart j ���
n �t�i at time �1, then back again after

time �0 � �1. This yields the following estimate for the
200403-2
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survival probability of the nth level after time �0:

Pnjimpulse � jh ���
n j ���

n ij2jh ���
n j ���

n ij2 � jh ���
n j ���

n ij4:

(8)

The answer to the foregoing query is therefore that
Eqs. (8) and (3) apply at different time intervals, and
therefore are mutually compatible.

Having established the validity of Eq. (3) in the context
of abruptly modulated MQT, we proceed to calculate
Gn�!�, Ft�!�, and finally their convolution, in order to
obtain the dynamically modulated decay rate Rn�t�.

(1) The nth-level coupling to the continuum corre-
sponding to Eq. (7) with ��t� � 1 must be evaluated for
the entire energy spectrum �1< �h! <1. It has the
form Gn�!� � j

R
1
�1 dq 



!�q�V�q� n�q�j2, where  n�q�

and  !�q� are the initial (bound) and final (continuum)
state wave functions, normalized to 1 and -�!�!0�,
respectively. Its evaluation has employed the semiclassi-
cal approximation for  !�q� well above or below the
barrier top, and confluent hypergeometric functions
near the top. The total width of Gn�!�, �R, defines the
shortest correlation time of the continuum �c � 1=�R,
and is related to the energy distance from the top �h�R �
�h!m � Um � En. Figure 1 shows Gn�!�, calculated for
two distinct representative cases: the states n � 12 and 15
(for the parameters given below). Several peaks can be
discerned in Gn�!� of Fig. 1(a) (n � 12). The narrow
peaks below the barrier height represent enhanced cou-
pling to the continuum (tunneling resonances) via quasi-
discrete levels. The broader, progressively diminishing
peaks at �h! > Um, whose separation scales as !1=2 at
high!, are above-the-barrier resonances, indicating con-
structive interference of waves transmitted to the right
and those reflected from the ‘‘wall’’ on the left (Fig. 1,
inset), with phase differences of 2�, 4�, etc. By contrast,
the peak heights in Gn�!� of Fig. 1(b) (n � 15) are
relatively low, because the n � 15 quasibound state al-
lows much larger overlap with continuum states near the
barrier top than with the above-barrier resonances.

(2) The steplike periodic modulation function in
Eq. (7): ��t� � 1 for j�0 < t < j�0 � �1, ��t� � 0 for
j�0 � �1 < t < �j� 1��0 �j � 0; 1; . . .�, has the spectral
density

Ft�N�0�!� �
2sin2�!�1=2�sin

2�N!�0=2�

�N�1!2sin2�!�0=2�
: (9)

The function (9) [plotted in Figs. 1(a) and 1(b)] consists
of a ‘‘comb’’ of bell-shaped spectral peaks centered at
!k � 2k�=�0�k � 0;�1; . . .� with the width 1=t, whose
weights diminish with j!kj [1]. When the alternating-tilt
intervals satisfy �1 & �c and �1 � �0 � �1, the modula-
tion ��t� causes successive tunneling events to be strongly
correlated (within the memory time �c). The spectral
peaks of Ft�!� are then sparse and may coincide
with the peaks of Gn�!� (tunneling resonances), as
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discussed below. By contrast, when the low-tilt inter-
val �0 � �1 � �c, and the comb is spectrally dense
[Fig. 1(b)], the system effectively loses its ‘‘memory’’
between consecutive tunneling events, which then re-
semble irreversible measurements that ‘‘interrupt’’ the
evolution (although the evolution remains unitary, in
reality). We may then approximate Ft�!� in (9) by
smoothing out the comb peaks separated by 2�=�0 to
become Ft�!� � ��1=2��sinc

2��!�!n��1=2�, where
sinc�x� � sinx=x. This form of Ft�!� effectively amounts
to spectral spread (broadening) ofGn�!� over a frequency
range �1=�1 in the convolution integral (3). In this case
Rn is insensitive to narrow resonant peaks of Gn�!�.

(3) The convolution of Ft�!�!n� andGn�!� yields, at
large enough t, the effective decay rate:

Rn �
2��1
�0

X1
k��1

sinc2
�
k��1
�0

�
G
�
!n �

2k�
�0

�
: (10)

This result provides the general, unified framework for
the study of dynamically modulated MQT (decay) rate.
The control parameters �0 and �1 in Ft�!� [Eq. (9)] are
seen to determine the relative weights and spacings of the
k-dependent peaks in Rn.

We may discern three limiting regimes in the depen-
dence of the decay rate Rn on �0 and �1.

(i) The QZE (i.e., reduction of the decay rate Rn with
the modulation rate) is obtained when 1=�1 * !m;�R.
We may graphically infer from Fig. 1 that the large width
of the modulation spectrum Ft�!� [compared to the
spectral width of Gn�!�] in the convolution (3) is then
the origin of the QZE. The physical sense is that when
the system is perturbed (interrupted) frequently enough,
the QZE arises since the energy uncertainty incurred
by the perturbations causes the effective decay rate to
be averaged over the entire spectrum of continuum
states, most of which do not contribute to the decay
[Gn�!� ’ 0]. The corresponding time-domain behavior
(Fig. 2) is one of repeatedly interrupted oscillations of
the initial-state population Pn�t�. The oscillatory charac-
ter of the evolution attests to short-time reversibility of
the tunneling at �1 � �c, i.e., well within the correlation
time of the continuum. This evolution is in sharp contrast
to the effectively irreversible steplike population loss
associated with Pnjimpulse [Eq. (8), and Fig. 2(b), upper
inset]. The loss due to Pnjimpulse should be used to calibrate
the oscillatory Pn�t�jmodul ’ e�RnT (solid curves), thereby
allowing an experimentally distinct signature of the QZE.

(ii) The AZE (i.e., decay speedup as the modulation
rate increases) is seen from Fig. 2(a) to arise (for n � 12)
when the unperturbed energy is strongly de-
tuned from the maximum of the coupling spectrum
Gn�!�, i.e., G12�!12� � G12�!m�, and the modulation
rate satisfies 1=�1 <!m. This implies that the decay
rate Rn grows with 1=�1, since the modulation function
Ft�!� is then probing more of the rising part of Gn�!� in
200403-3
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FIG. 2. (a) The decay rate R (in units of the unperturbed,
golden rule rate RGR), as obtained from the convolution of
Ft�!� and Gn�!� in Fig. 1(a), for n � 12. The rate is plotted as
a function of the interruption time �1 (in units of 1=!0) on a
log scale for �0 � 5�1 (curve 1) and �0 � 50�1 (curve 2). The
domains of QZE, QZE scaling, and AZE are marked. Inset: the
evolution of lnP�t� for level n � 12; solid line 1: QZE-like
decay; solid line 2: AZE-like decay; dashed line: unperturbed
decay. (b) Same, for level n � 15, corresponding to Fig. 1(b).
Lower inset: decay rate R shows only QZE behavior. Upper
inset: P vs total time t (including the lower-tilt period), show-
ing impulsive jumps.
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the convolution (3). Physically, this means that, as the
energy uncertainty grows with the modulation rate 1=�1,
the state decays into more and more channels, whose
weight Gn�!� is progressively larger.

(iii) For low lying nearly harmonic levels (here 0 �
n � 12) Gn�!� has distinct tunneling resonances if
2�k=�0 ’ n!0. A periodic modulation corresponding to
narrow spectral peaks Ft�!� � -�!� 2k�=�0� would
excite such a resonance, and thus give rise to AZE-like
resonantly enhanced tunneling [see spikes in Fig. 2(a)]. In
this regime, our theory qualitatively reproduces previous
treatments [9,11] of periodically modulated barriers [with
sinusoidal ��t�], which have predicted tunneling-rate en-
hancement. It should be mentioned that enhancement of
the decay rate to the continuum for high-frequency bias-
current modulation has been observed previously [14].
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However, this observation was made under rather high-
temperature conditions, where many levels are populated
in the JJ potential and the present picture does not hold.

For numerical examples we chose C � 58 pF and ei-
ther Ic � 15 1A and n � 12 [Figs. 1(a) and 2(a)] or Ic �
16 1A and n � 15 [Figs. 1(b) and 2(b)], yielding !0 �
3:85� 109 s�1, !m � 7:8� 109 s�1, and RGR �
1:2� 103 s�1 for n � 12, whereas !0 � 3:97� 109 s�1,
!m � 1:1� 109 s�1, and RGR � 6:8� 107 s�1 for n �
15. The QZE for n � 12 and 15 then requires �1 & 0:1
and 1 ns, respectively, while the AZE requires �1 >
0:1 ns for n � 12 and is practically absent for n � 15
when Ib is modulated between 0:992 65Ic and 0:993Ic.

To summarize, our comprehensive treatment of dy-
namically controlled MQT has elucidated its hitherto
unknown short-time evolution at low temperatures. We
find a surprisingly high sensitivity of this dynamics and
the resulting modification of the decay rate to moderate
changes of the bias-current modulation and to the energy
of the initial state relative to the barrier. Depending on the
chosen values, the bias-current modulation has been
shown to imitate either frequent measurements or corre-
lated perturbations of a decaying state, between succes-
sive impulses (shocks) [11,12]. Such modulation has been
demonstrated to either enhance or suppress the MQT rate.
These modifications are similar to (but more complex
than) the AZE or QZE. The present analysis provides
useful handles on decoherence control in quantum gates
based on JJ qubits [15] or their atomic-condensate coun-
terparts [10].
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