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Network Structures from Selection Principles
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We present an analysis of the topologies of a class of networks which are optimal in terms of the
requirements of having as short a route as possible between any two nodes while yet keeping the
congestion in the network as low as possible. Strikingly, we find a variety of distinct topologies and
novel phase transitions between them on varying the number of links per node. Our results suggest that
the emergence of the topologies observed in nature may arise both from growth mechanisms and the
interplay of dynamical mechanisms with a selection process.
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the minimization of a linear combination of average
degree and average distance (the distance between two

Here P is any path connecting site i to site j of the system,
p is any node belonging to such a path, and kp is the
There have been many exciting recent developments
[1–3] in understanding the topologies of many natural
and artificial networks. The analysis of network topology
is carried out using classic concepts such as clustering [4],
the distribution of the number of links from each node
(called the degree) [2,3,5], and its small-world character
[6,7]. Strikingly, many of the observed topologies are
quite distinct from those expected for generic random
networks [4,8]. There has been important progress
[2,3,5,9,10] in rationalizing the existence of nonuniversal
scale-free networks (the degree distribution exhibits a
power law behavior over a finite range with a nonuniversal
exponent) by dynamical models entailing the growth by
node and edge addition (with possible preferential attach-
ment), rewiring [2], and edge removal [10].

Our focus here is the proposal and analysis of a class of
models in which the key selection criterion for network
topology is optimality. Channel networks formed in river
basins have been shown to attain, in the steady state of
their dissipative dynamics epitomized by the general
landscape evolution equation [11], a minimum of total
energy dissipation [12]. Strikingly, a variety of robust
scaling features emerge that closely resemble those ob-
served for natural landforms [12], and universality
classes exist depending, for example, on the terrain het-
erogeneities [13]. Because of the nature of the functional
to be minimized, all trees, i.e., networks with no loops,
are local optima and thus prevail over networks which are
not competitive from an evolutionary viewpoint [11–13].
Optimization has been introduced as a possible explana-
tion of the degree distribution observed in the Internet
topology [14] or to investigate the origin of small-world
networks [15], taking into account the physical distance,
i.e., Euclidean distance, between the nodes of a spatial
network. Scale-free networks arising from optimal design
have been previously studied [16]. It has been shown that
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nodes is defined as the minimum number of edges tra-
versed to join them) can lead to the emergence of a
truncated power law in the degree distribution.

Our goal is to understand the topology of networks
which minimize a physically motivated cost function.
Strikingly, we find a variety of distinct topologies and
novel phase transitions between them on varying the
number of links per node.

Suppose that some type of information has to be com-
municated between pairs of nodes of the network [6]. It is
plausible that, in addition to the average distance between
any two nodes, the type of nodes encountered along the
path(s) joining them may also matter in the optimization
of the dynamics of communication taking place in the
system. For example, selective pressure may operate so as
to choose certain nodes because of their high connected-
ness—or else to avoid them for the same reason. As-
sociated with the type of node is a local feature that
depends only on its degree, namely, the number of edges
rooted in the node. On a global scale, we will distinguish
among structures that rewire local features at random
selecting the changes if the new structure provides a
selective advantage. It is well known that, in many such
optimization problems, the key factor that matters is the
shape of the cost function [12,13]. The concavity or
convexity of the cost function can be embodied by a
power law form with scaling exponent � less than or
greater than 1, respectively:

H� �
X

i<j

dij���; (1)

where i and j are pairs of nodes of the network, and

dij��� � min
P

X

p2P:i!j

k�p: (2)
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FIG. 1 (color online). Degree distribution, averaged over 200
realizations, for several system sizes (n � 35, 50, 70, 100, and
140) for � � 0:7 and r � 1:05. The system displays a range of
degrees.
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FIG. 2 (color online). Crossover between the two distinct
behaviors: the heterogeneous regime which exhibits a range
of degrees and the homogeneous one characterized by a peaked
distribution. Data are averaged over 200 realizations for � �
0:7, n � 70, and for several values of r � l=n.
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degree or connectivity of node p. The weighted distance
dij��� is a global quantity associated with the pair i; j and
is the minimum of the sum of degrees k�p (a local prop-
erty), evaluated along the path P from i to j, over all the
paths connecting i and j. Note that, in the special case of
loopless treelike structures, such a path is unique and
dij �

P
p2P:i!jk

�
p . In the limiting case � ! 0, Eq. (2)

becomes the standard definition of distance on a network
[7]. The new definition of weighted graph distance intro-
duced in Eq. (2) captures the conflict between two com-
petitive trends: the avoidance of long paths and the desire
to skip heavy traffic.

The networks minimizing the cost, Eq. (1), are
searched for among the ensemble containing a fixed
number of nodes n, as well as the number of links (edges)
l. The resulting networks are analyzed in terms of the
degree distribution P�k�, i.e., the fraction of nodes with
degree k, the average distance between pairs of nodes, and
the average clustering coefficient C � n�1

P
iCi, where Ci

is a measure of how interconnected the neighbors of a
given node are [7]:

Ci �
li

ki�ki � 1�=2
; (3)

li is the number of links between the neighbors of node i,
and ki�ki � 1�=2 is the total number of possible pairs that
can be formed among them.

The optimization method used in the numerical simu-
lations is a Metropolis scheme at zero temperature. The
goal is to obtain the statistics of all local minima which
are accessible topologies associated with the chosen dy-
namics [11].

We have studied several values of � and r � l=n with
n � 35–200. The protocol of the simulation is as follows:
(i) generation of a random initial configuration with fixed
n and l; (ii) random rewiring: Specifically, a link con-
necting the sites i and j is randomly chosen and substi-
tuted with a link from i to a site k, not already connected
to i, extracted with uniform probability among the sites of
the system. This ensures that the number of links l as well
as the size of the system n remains constant during the
minimization; (iii) connectedness control: If the graph
is not connected after rewiring, step (ii) is repeated;
(iv) energetic control. The new value of H��t� 1� is
calculated. The new configuration is accepted only if it
is energetically favorable, i.e., only if H��t� 1�<H��t�;
otherwise the change is rejected and we return to step (ii).

Note that the zero-temperature setting ensures feasible
optimality of the emerging network structure [13], a
feature that is relevant for dynamical accessibility of
complex optimal structures. The minimization algorithm
stops after F consecutive failed changes on the network;
we have chosen F � n�n� 1�, so that, on average, each
pair of vertices is allowed to change its state twice. For
each case we performed 200 independent simulations,
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starting with different random initial configurations and
varying the size n of the system: n � 35, 50, 70, 100, 140,
and 200. For each size, the different values of the ratio r
investigated are r � 1:051.1, 1.2, 1.3, 2.0, 2.3, and 3.0.

On varying r, we observe two distinct behaviors. The
first occurs for values of r� 1: The system displays an
apparent scale-free behavior in P�k� for several values of
� (see Fig. 1, for � � 0:7). However, the behavior does not
seem to be a genuine power law because the sharp cutoff
does not display the expected dependence on the system
size n. Unfortunately, the computational cost, which
grows exponentially with the number of nodes, does not
permit us to quantify the weak dependence of the cutoff
on n. As � increases, this apparent scale-free region
shrinks around the value r � 1 and is vanishingly small
for � > 1. The second behavior is obtained for larger
values of the ratio r—the degree distribution obtained
is strongly peaked around the average value of k, hki
(Fig. 2).

A sample of network topologies is illustrated in Fig. 3,
for different values of � and r.

On increasing the value of the ratio r, one moves from
networks characterized by the presence of some highly
connected nodes together with many peripheral sites (top
198701-2
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FIG. 4. Mean clustering coefficient for the optimal configu-
ration Copt normalized to the mean clustering coefficient, Crand,
of the random configuration. Top: results for network size
n � 70 and � � 2:0; in the inset the behavior of the ratio
Copt=CrandP is shown, where CrandP represents the mean cluster-
ing of a random graph with the same degree distribution P�k�
as the optimized network. Bottom: results for network size n �
70 and � � 0:35; in the inset (n � 50, � � 0:35) both critical
values, rc��� and r0c���, are shown.

FIG. 3 (color online). Graph representation of four typical
networks: (a) � � 0:4, r � 1:05, n � 100; (b) � � 0:7, r �
1:05, n � 140; (c) � � 0:5, r � 2:0, n � 50; (d) � � 2:0, r �
1:05, n � 100. The graphs have been produced with the Pajek
software.
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left and right) to networks in which almost every node
has the same degree k � hki (bottom left and right).
In addition, a sharp transition is observed in terms of
the average clustering coefficient C � hCii, as defined in
Eq. (3).

For � > 1 [Fig. 4 (top)], the system undergoes a clear
phase transition as the value of the ratio r increases
passing from a regime characterized by zero clustering
to one in which the clustering coefficient becomes differ-
ent from zero. The cost function in Eq. (1) has two
competing forces: the minimization of the graph diame-
ter and the minimization of node degree. When � > 1,
the minimization of node degree dominates and the sys-
tem attempts to minimize the degree of each node result-
ing in a peaked distribution around the mean value hki,
with a nontrivial topology characterized by zero cluster-
ing and exhibiting the presence of long loops. [Fig. 3
(bottom right)].When the ratio r reaches the critical value
rc���, one obtains a nonzero clustering coefficient.

This transition also occurs for �< 1. However, when
�< 1 one obtains an additional phase transition at r0c���,
where the system passes from optimal networks exhibit-
ing a nonzero clustering coefficient, to ones with no
clustering at all. Starting from very small values of r,
we observe topologies characterized by the presence of
few interconnected hubs (i.e., sites with very high degree
[2,17]) linked to many peripheral sites [Fig. 3 (top left)].
Indeed, when �< 1, the tendency expressed by the cost
function is to decrease the graph diameter, i.e., a measure
of the mutual distance among pairs of nodes.

The emergence of this extra phase transition under-
scores the importance of the concavity (convexity) of
the cost function.

The limiting case � ! 0 would correspond to the
minimization of the standard graph distance, leading,
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in the region r� 1, to a single central hub connected to
n� 1 peripheral nodes, which share the remaining l�
n� 1 links. This situation leads to nonzero clustering.
The minimization of the graph distance corresponds to a
limiting case of [16] as well; however, in [16] there is no
constraint on the number of links l, so that the optimal
network they find is a clique, in which each node is
connected to each other.

Increasing the ratio r does not favor adding other links
among the hubs, because their already high degrees would
only increase further. Hence, the system reorganizes by
increasing the number of hubs and automatically reduc-
ing their degrees, trying to avoid expensive triangles
between hubs. When the transition occurs, at r0c���, the
network does not exhibit hubs any more, but tends to
become quite homogeneous in the sense that almost every
node has coordination close to the average value hki. Even
in this regime the optimal topology is distinctly different
from the random one. In fact, it displays a peaked degree
distribution around the mean value hki without significant
clustering [Fig. 3 (bottom left)]. The loops formed have
the maximum possible length in order to reduce the
energy function. Adding extra links to the network forces
the loops to become smaller, still avoiding clustering up
to a second critical value of r, rc���. Beyond this value,
‘‘triangles’’ appear leading to a transition similar to the
one encountered for � > 1 [Fig. 4 (bottom, inset)].
198701-3
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FIG. 5 (color online). Characteristic path length Lopt, nor-
malized to the classical random one Lrand, vs �.

P H Y S I C A L R E V I E W L E T T E R S week ending
14 MAY 2004VOLUME 92, NUMBER 19
The extent of the clustering phase for r < r0c��� and
�< 1 shrinks for increasing values of �; the critical
value rc��� decreases as � increases, 8�. From Figs. 1,
2, and 4, one finds that several distinct topologies are
obtained for different values of � and r: a heterogeneous
regime exhibiting a broad distribution of degrees (r� 1,
�< 1) observable both in the clustering and no clustering
phase depending on the value of �; a homogeneous re-
gime for larger values of r with C � 0 [r > rc��� 8�,
and �< 1, r < r0c��� but not in the treelike limit] or C �
0 [�< 1, r0c���< r< rc���, and � > 1, r < rc���].

We have also studied the characteristic path length, L,
defined as the average, over all pairs in the system, of
the graph distance between pairs of nodes.

As shown in Fig. 5, in the entire interval of �, the
characteristic path length of the optimal configuration,
Lopt, is comparable to or smaller than the random one,
Lrand. Even though the small network sizes studied here
do not allow us to reach definitive conclusions, the system
seems to display a small-world effect [7].

We have studied the system behavior in terms of mean
clustering and average path length in comparison to both
a classical random graph [4,8] (Copt=Crand and Lopt=Lrand)
and a random graph characterized by the same degree
distribution P�k� as the optimized network (Copt=CrandP
and Lopt=LrandP): Both studies give comparable results
(see, for example, the top inset of Fig. 4).

In summary, we have investigated the role of selective
pressure in determining the topological features observed
in natural and artificial complex networks. Our work is
complementary to existing models that either rely on
dynamical mechanisms, such as preferential attachment,
or on topological and geometrical criteria. Optimality
leads to the emergence of several distinct network struc-
tures including an apparent scale-free arrangement in the
treelike topology limit. Besides the degree distribution,
we have studied the clustering coefficient and the average
path length of the selected networks which point to the
existence of nontrivial phase transitions and to the fea-
tures of the small-world effect. Our main result is that the
emergence of the topologies observed in nature may not
198701-4
exclusively be the outcome of growth mechanisms but
may also arise from the interplay of dynamical mecha-
nisms with an evolutionary selection process.
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