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We study the Brusselator reaction-diffusion model under conditions where the Hopf mode is
supercritical and the Turing band is subcritical. Oscillating Turing patterns arise in the system when
bulk oscillations lose their stability to spatial perturbations. Spatially uniform external periodic forcing
can generate oscillating Turing patterns when both the Turing and Hopf modes are subcritical in the
autonomous system. Most of the symmetric patterns show period doubling in both space and time.
Patterns observed include squares, rhombi, stripes, and hexagons.
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Although hexagonal structures are more commonly
encountered, square patterns have been found in a variety
of nonequilibrium systems. They arise as Faraday waves
due to parametric forcing of layers of liquid [1] and sand
[2]. They are formed by convective cells in Rayleigh-
Bénard [3-5] and Marangoni-Bénard [6] convection.
They have also been observed in ferrofluids [7,8] and
nonlinear optical systems with feedback [9,10]. Square
patterns have been found in a model of CO oxidation
on Pt(100) with “up-hill” diffusion [11], and in the
Swift-Hohenberg equation [12], where in both cases
fourth-order spatial coupling is present. To the best of
our knowledge, however, stable square patterns have not
previously been obtained either in experiments on, or as
stable solutions of, reaction-diffusion systems. Here we
report observations of various oscillating Turing patterns,
including stable squares, in the Brusselator model. These
patterns arise from interaction between a subcritical
Turing mode and bulk oscillations in the autonomous
system. They can also be obtained by spatially uniform
external periodic forcing when both the Turing and Hopf
modes are subcritical.

We employ mainly the original Brusselator reaction-
diffusion model [13]. When the only stable state of the
autonomous system (a = 0) is the uniform steady state,
we add external uniform periodic forcing of frequency f
(a # 0) in order to study pattern formation:

% =a—(b+ Du+u*v+ acosmft)+D,Vu, (1)
Jv 2 2
E=bu—uv+DvVv, 2)

Figure 1(a) shows the stability diagram of the spatially
uniform steady state (SS) of the autonomous system in
the (b, D,,) plane. The Hopf bifurcation line (H) is hori-
zontal at b = 10.0. It crosses the Turing bifurcation line
(T) at D, = 5.19. Both bifurcations are supercritical. We
study the behavior of the system in the oscillatory and
oscillatory Turing (At > 0, ReAy > 0) domains at con-
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stant supercriticality, b = 10.2. Figure 1(b) shows the
dispersion curves at the designated points in Fig. 1(a).
All our simulations employ periodic boundary condi-
tions with a system size of 128 X 128 space units. Grey
levels show concentration of u. Figure 2(a) shows snap-
shots of the stable patterns at the same set of points. If
D, > 6.3, the system generates uniform bulk oscillations
(BO). When D, is about 6.0, oscillating square patterns
arise [Fig. 2(a)-2]; oscillating hexagons [Fig. 2(a)-3]
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FIG. 1. Stability analysis of the Brusselator model
(a) Bifurcation diagram. Hopf bifurcation: b =1+ a?;
Turing bifurcation: bT = [1 + a/D,/D,J?, with fixed a = 3,
D, = 10. (b) Dispersion relations showing unstable Hopf mode
and transition of Turing mode from stable to unstable, e.g., as
D, is decreased.
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(a) Pattern scenario with growth of the Turing instability as shown as marked points 1-6 in Fig. 1. Oscillatory patterns

include BO (1), square (2), or hexagonal (3) lattices. Stationary patterns include honeycomb (4), stripes (5), and hexagonal spots (6).

(b) One full period of the oscillatory square.

appear at about D, = 5.7. Both of these patterns are
superlattices. As we decrease D,, regular stationary
Turing patterns emerge: honeycomb hexagonal patterns
[Fig. 2(a)-4], giving way to labyrinthine patterns
[Fig. 2(a)-5] and then to inverted hexagons [Fig. 2(a)-6].

The oscillating superlattice patterns are double peri-
odic both in time and in space. They are related to the
oscillatory patterns found earlier in the spatially one-
dimensional Brusselator model near the codimension-
two Hopf-Turing point in the region where both modes
are supercritical [14]. Here, the patterns occur in the
oscillatory domain far from the Turing line. Some criteria
for the existence of stable square Turing patterns have
been obtained previously in the framework of amplitude
equations [15,16], but we have not been able to find any
demonstration of such patterns in reaction-diffusion
models. Hence, we studied this phenomenon in more
detail. Figure 2(b) shows an entire period of oscillation
of the square lattice. The time period is twice the period
of the BO. One can see that the instantaneous patterns
shifted by half a time period are shifted by half a space
period along both principal axes. Fourier spectra of the
pattern reveal three major spatial modes with wave num-
bers ky/2, ky/+/2, and ky. The fundamental wave number
k7 is shifted slightly to the left of the maximum of the
Turing band in Fig. 1(b)-2. In some parts of the oscilla-
tory cycle only one of the modes, ky/2 or kr/~/2, has a
significant amplitude, while the amplitude of mode k7 is
always large.

This square pattern is quite robust, occurring in a
significant domain of the parametric space (2.4 <a <
3.5, and b < b < b!). It survives addition of a small
term of mutual annihilation of activator and inhibitor,
—uv, to the Brusselator. We have also found this pattern in
the Sel’kov model [17] in an analogous region of the
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bifurcation diagram. The oscillatory hexagonal lattice
with phase modulation in Fig. 2(a)-3 is observed in a
narrow range of parameters and, similar to the square
lattice, also shows double periodicity. Earlier, we found a
period tripling version of this pattern [18].

Evolution from the initial condition, the randomly
perturbed uniform SS, to a specific stable pattern in
Fig. 2(a) depends on the position of the system in the
parameter space. When the system is in the oscillatory
domain between the Hopf and Turing lines, spatially
uniform bulk oscillations [Fig. 2(a)-1] develop initially.
Then, spatial modulation of the BO appears with approxi-
mately twice the wavelength of the maximum of the
Turing band, leading to the final stable oscillatory pat-
tern [Figs. 2(a)-2 and 2(a)-3]. When the parameters lie in
the domain above both the Hopf and Turing lines
[Figs. 2(a)-5 and 2(a)-6], the stationary Turing patterns
start to develop immediately from the random initial
conditions. Formation of the pattern in Fig. 2(a)-4, near
the codimension-two point, is more complex. On the one
hand, spatial perturbations around the SS tend to decay,
because all spatial modes at the SS are damped. Thus, BO
develops first. On the other hand, once the BO emerges, it
activates the Turing mode, and the Turing pattern grows,
ultimately supplanting the BO.

Oscillating Turing patterns can also be produced in the
system where both the Turing and Hopf modes at SS are
subcritical, if the system is subjected to external periodic
forcing, &« > 0 in Eq. (1). Figure 3 illustrates the pattern
formation at point 7 in Fig. 1(a). Figure 3(a) shows a
frequency-amplitude diagram, where a tongue-shaped
domain of oscillating patterns is surrounded by an area
of BO. Figure 3(b) contains a typical sequence of patterns
arising when the frequency is decreased along the arrow
shown in Fig. 3(a). Figure 3(b)-1 shows a square pattern,
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Oscillatory Turing patterns under periodic forcing. (a) Pattern locking diagram in frequency f, and forcing strength «.

(b) Scenario as f is decreased along arrow in (a), square (1), and rhombic (2) lattices; modulated (3), parallel (4), and labyrin-
thine (5) stripes. (c) One full period of the modulated stripe pattern.

Fig. 3(b)-2 shows a rhombic pattern, and Fig. 3(b)-3
shows a pattern of strongly modulated parallel stripes.
An entire oscillation cycle of this last pattern is shown in
Fig. 3(c). Figure 3(b)-4 shows a parallel stripe pattern
which is stable around f = 0.42. Labyrinthine patterns
occupy the remainder of the domain. This sequence of
patterns is found at @ = 0.12, 0.15, 0.17, and 0.20.

With similar forcing, we find oscillating hexagonal
superlattices, parallel stripes, and labyrinthine patterns
at point 8 in Fig. 1(a). Labyrinthine patterns appear at
points 9 and 10. Hexagons were also found at point 10.

The linear stability analysis used to generate Fig. 1
applies only to the stability of the uniform steady state
to spatiotemporal perturbation. To understand better the
stability properties of the BO, we need to examine the
Floquet multipliers associated with the limit cycle solu-
tion. The Floquet multipliers w, of the limit cycle cal-
culated as a function of the wave number k are shown in
Fig. 4. At k = 0, the nontrivial multiplier (point A) is less
than 1 in absolute value, indicating that the limit cycle is
orbitally asymptotically stable. The limit cycle loses
stability at ko = 0.32, where the dominant multiplier
crosses — 1. This crossing corresponds to the period dou-
bling bifurcation, because any T-periodic function P(r)
around the limit cycle now obeys P(t + T) = —P(T),
P(t + 2T) = P(T).

In Fig. 4, the system is very close to the period dou-
bling bifurcation point and has essentially a single un-
stable spatial mode at k. Its second harmonic, 2k, is near
the maximum of the curve w(k). Comparison with the
results of direct simulations, shown in Fig. 2, reveals that
2ky = kg. Thus, this harmonic of the primary unstable
mode determines the principal space scale of the oscil-
latory square pattern, and combines with the modes at &
and +/2k, to generate the superlattice. The maximum of
the curve u(k) is close to the maximum of the Turing
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band in Fig. 1(b). The temporal period doubling that takes
place at k produces a standing wave of that wave number.
One can thus view the development of the spatial struc-
ture either as a result of the 1:2 resonance between this
standing wave and the Turing mode or as a 1:1 resonance
between two stationary entities: the envelope of the
standing wave and the Turing mode.

As we move along the line of points | — 2 — 3 — 41in
Fig. 1, the slave mode at 2k, grows and w(k) in Fig. 4
reaches 1 before the Turing instability of the steady state
occurs in Fig. 1. This difference in behavior between the
eigenvalues of the Jacobian matrix and the Floquet multi-
pliers explains why we obtained a stationary Turing
pattern in Fig. 2(a)-4 even though the Turing instability
at that point is still below criticality.

We have shown in a reaction-diffusion model how
interaction with a subcritical Turing mode can destabi-
lize uniform bulk oscillation and lead to either oscillatory
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FIG. 4. Floquet multipliers w;, (solid for real; dashed for
imaginary part) of the limit cycle solution as a function of
wave number k. Parameters as in Fig. 1(a)-2.
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or stationary Turing patterns. In particular, stable square
patterns, which have not previously been seen in reaction-
diffusion systems, are obtained, and our results suggest
how one might generate such patterns experimentally. For
example, in the chlorite-iodide-malonic acid system [19]
in a gel reactor, one might start at parameters just above
the bifurcation from uniform steady state to bulk oscil-
lations and then gradually vary the reservoir concentra-
tions to approach the Turing bifurcation [analogous to
moving from point 1 toward point 4 in Fig. 1(a)]. We
have also seen that the standard linear stability analysis
of the uniform steady state is insufficient to describe these
phenomena and that one must carry out a Floquet analysis
of the stability of the limit cycle under spatiotemporal
perturbations. While the nature of the bifurcations in-
volved is quite different, particularly with regard to
wavelength selection, the behavior described here is
analogous in a sense to the “‘self-parametric instability”
of uniform bulk oscillations described by Argentina
et al. [20] when the limit cycle approaches an Andronov
homoclinic bifurcation.
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