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New quantified observables of complexity are identified and utilized to study sequences (time series)
recorded during the spontaneous activity of different size cultured networks. The sequence is mapped
into a tiled time-frequency domain that maximizes the information about local time-frequency
resolutions. The sequence regularity is associated with the domain homogeneity and its complexity
with its local and global variations. Shuffling the recorded sequence lowers its complexity down to
artificially constructed ones. The new observables are utilized to identify self-regulation motifs in

observed complex network activity.
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Diverse open systems, biotic and abiotic alike, can
exhibit complex dynamical behavior [1-8]. It has been
suggested that the complexity of biotic systems can be
inherently regulated via autonomous utilization of
internally-stored means of control, hence, the term self-
regulated complexity [8]. If correct, the complex activity
of biotic cultured networks should be distinguishable
from that of nonautonomous abiotic systems [9]. How-
ever, complexity is still an intuitive, blurred concept with
no agreed-upon definition [1-8], so common quantified
observables associated with it are yet to be developed.
Towards this goal, we present a set of observables devel-
oped to capture some special features of the self-
regulated activity of cultured networks. Specifically, our
observables distinguish the latter from artificially con-
structed time sequences of similar statistical properties as
well as the dynamics of modeled networks [10].

Hints about self-regulation in cultured networks.—Our
in vitro networks were spontaneously formed from a
mixture of cortical neurons and glia cells from one-day-
old Charles River rats, homogeneously spread over a
lithographically specified area (as detailed in [11,12]).
Consequently, the spread cells turned into a network by
sending dendrites and axons to form synaptic connections
between neurons [11,12]. Although the above described
self-wiring process is self-executed with no externally
provided guiding stimulations or chemical cues, a rela-
tively intense dynamical activity is spontaneously gener-
ated within several days. The activity is marked by the
formation of synchronized bursting events (SBEs); each is
a short (~200 ms) time window during which most of the
recorded neurons participate in relatively rapid firing
(Fig. 1). We illustrate in Fig. 1 that shuffling (random
reordering of the intervals) alters the temporal ordering
of the original sequence. However, as we have detailed in
[11], such shuffling yet preserves the same statistical
scaling properties (which can be approximated with the
same Lévy distributions) [11,13] (and references within).
In addition, the SBEs show long time correlations, and,
for some networks, clear hierarchical temporal ordering
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PACS numbers: 87.18.Sn, 89.75.Hc, 05.45.Tp

(i.e., bursts of SBEs, bursts of bursts of SBEs, up to
four detectable hierarchical levels) is observed [11].
Put together, the above observations motivated us to
assume that the spontaneous activity of cultured networks
might be self-regulated, despite the artificial nature
of their construction. Such self-regulation can be exe-
cuted via neuronal internal autonomous means, which
are self-activated by the neurons. Or even more likely,
they are coactivated by glia cells (with their own com-
plementary regulatory means), which are coupled to the
neurons [14,15].

Looking for quantified observables of self-regulated
complexity.—Guided by the notion of self-regulated com-
plexity (versus abioticlike nonautonomous complexity),
we set to develop proper observables for distinguishing
between these two possibilities. To proceed, we compare
the recorded and shuffled sequences shown in Fig. 1. The
recorded one is marked by large local and global temporal
variations. Namely, at each temporal location, there are
large frequency (density of SBEs) variations when look-
ing at time windows of different widths. These local
variations vary from place to place along the sequence.
Guided by this realization and the previously mentioned
special temporal features of the recorded sequences, we
set the following requirements from our observables:
(i) To associate the sequence regularity with the uniform-
ity in the time-frequency (rates) relative resolutions
rather than with the statistics of the temporal ordering.
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FIG. 1 (color online). For the analysis of the temporal order-
ing of the network activity, it is convenient to convert the time
series into a binary sequence, whose ‘““1”’s correspond to the
SBEs and the width of the SBEs sets the basic time bin. Top: A
25 s long binary sequence representation of recorded SBEs.
Bottom: The sequence after shuffling of the inter-SBE
intervals.
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The former refers to the relative resolution required to
capture maximal information about the observed varia-
tions. (ii) To associate the sequence complexity with the
local and global variations in the required relative reso-
lutions instead of with the directly observed local and
global frequency variations. (iii) To evaluate significantly
lower values of complexities to the recorded sequences
after they are shuffled, while keeping similar regularity
regardless of shuffling. (iv) To be able to distinguish
between the dynamical behaviors of different systems
by their distinct positions on the complexity-regularity
plane. (v) To be able to handle sequences with hierarchi-
cal temporal organizations.

Representation at the time-frequency plane.—To retain
information about both temporal locations and frequency
variations, we first transform the sequence into a presen-
tation in its corresponding time-frequency domain
utilizing the wavelet packets decomposition [16]. Next,
we would like to extract at each temporal position
(say the ith element of the sequence) information about
the activity rates (frequencies) for all available time
windows centered around this location. For a sequence
of Ny;, elements, the relevant time windows range from
Atin = 1 (in units of the basic recording time width) to
At = Nyin- That is, we would like to extract informa-
tion about Ny;, time windows at each of the Ny, locations
of the sequences. However, such Nﬁin matrix for a se-
quence of only N, elements must contain redun-
dant information (i.e., over-complete representation of
the recorded sequence). In order to avoid such redun-
dancy, only Ny;, locations on the time-frequency domain
are allowed to be selected, subject to the uncertainty
constraint between time and frequency resolutions,
ArAf = 1. Since there are also N, frequency bands,
from Afpin =1 to Afnax = Npin, it implies that each
location can be assigned a local relative resolution
At/Af out of Ny = 1 + logy(Ny;,) possible ratios (for
simplicity, Ny, of the sequences considered here are in
factors of 2).

It is convenient to illustrate both constraints as tiling of
the time-frequency domain with Ny, rectangles, each
with its own aspect ratio (height Af and width Ar),
representing the relative resolutions in time and fre-
quency. We emphasize that the constraints are not simple
Lagrange multipliers as the domain has to be covered
with exactly Ny;, nonoverlapping rectangles. Utilizing the
wavelet-packet-decomposition algorithm allows parti-
tioning (tiling) of the domain into rectangles of different
aspect ratios. Each possible combination of Ny;, nonover-
lapping rectangles that geometrically covers the entire
domain can serve as a complete basis that spans the
recorded sequence on its corresponding time-frequency
domain.

Selecting the best tiling—The next challenge is to
select, out of all possible tilings, the one which is most
efficient in extracting the features of interest from the
recorded sequence [16,17]. Here we are interested in a
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method that will generate for the recorded sequence and
its shuffled version distinct tilings, as illustrated in
Fig. 2. We follow the approach of Thiele and Villemoes
[17], which is inspired by the notions of global Shannon
information or Entropy minimization. The idea is to
select the combination of rectangles that can cap-
ture most efficiently the information about local and
global variations in the sequence temporal ordering.
To do so, first, each possible rectangle is assigned a
measure M, = —gq,In(q,), where g, is the normalized
energy of the recorded sequence on the nth rectangle. The
energy is evaluated for the case that the entire domain is
tiled by the same rectangles (the same aspect ratio) as
that of the nth rectangle. The global measure M —the
summation of M, over the Ny;, rectangles—is utilized
for selecting the best tiling; i.e., it is used as the cost
function to be minimized. The algorithm presented in
[17] is proved to minimize M. Examples of such best
tilings for the recorded sequence and the shuffled one
are shown in Fig. 2.

Evaluating the sequence regularity.— The sequence
regularity R is usually perceived as a measure of its
relative location on the abscissa between complete disor-
dered (random) sequences (R = 0) and purely ordered
(periodic) ones (R = 1). Several measures of regularity
(e.g., algorithmic information content) have been sug-
gested before [2,3]. These measures focus on the temporal
locations of the events (““1”’) on the time axis. Here we
present a new observable of regularity evaluated on the
time-frequency domain. The idea is to associate the se-
quence regularity with the uniformity of its correspond-
ing time-frequency domain, namely, with the uniformity
of its rectangle distribution. The latter represents the
distribution of the local relative resolutions in time and
frequency as selected by the best tiling for extracting
maximal information from the sequence.

From physics perspective, a tiled domain (Fig. 2) can
be viewed as a magnetic material with the rectangles
representing its local magnetizations. With this picture
in mind, we first relate the local relative resolution of
each rectangle n with its aspect ratio (Az/Af) by R, =
log,(At/Af)/10gy(Nyi,). Defined this way, R, (the

FIG. 2 (color online). Examples of best tiling for the re-
corded sequence (left) and its shuffled version (right), which
are shown in Fig. 1. Time is on the horizontal axis and
frequency on the vertical axis. The color levels represent the
values of ¢,,. Note that for the shuffled sequence larger portions
of the time-frequency domain are tiled by similar rectangles,
which corresponds to weaker variations.
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analogue of local magnetization) is assigned positive
values for rectangles with higher frequency resolution
(smaller Af) and negative values for those with higher
time resolution (smaller Ar). The normalization of R, by
the logarithm of the maximal aspect ratio Ny, entails
that -1 =R, = 1.

Next, drawing upon the notion of total magnetization,
we simply define the sequence regularity R as the average
of R,. Defined this way, R = 0 for completely disordered
sequences, i.e., sequences with Gaussian distribution of
intervals, and R = 1 for purely regular ones, i.e., strings
of one kind of interval. As will be shown later, artificial
sequences constructed from the periodic and the random
ends towards the center meet around R = 0.5. The
regularity can also assign negative values for under-
dense (sparse) sequences in which the number of intervals
is smaller than /Ny,. Such sequences are not con-
sidered here.

Variation factors and Structural Complexity—The
regularity observable represents the uniformity of the
time-frequency domain. Therefore, we set to define addi-
tional complementary observables associated with the
domain varioformity. The latter refers to the distribution
of local variations between neighboring rectangles. In
order to capture the contribution of both local variations
and their global variability between segments located at
different positions, the sequence is segmented into words.
For each word [/, we define its variation factor VF to be

— |Rn - le : ®( n’ m)
Nl = Mg\ i
N > 0(q, " qm) ’

VF, =( 0

N )

where the sum is over all neighboring rectangles n, m.
Ng(I) is the number of events (and also intervals) detected
within the /th word, and Ny is an average over different
words of the same length as the I/th one. ®(x) is the
Heaviside function; ®(0) = 0 and O(x # 0) = 1.

Finally, in order to include also the variations between
the sequence words, we identify the variance of the
variation factors to be the sequence of its structural
complexity SC. So that, for a sequence segmented into
N, words, it is defined to be

1 Na) .
SC = var(VF) = N—Z(VF, — VF)2. )
o =]

Exploring the complexity plane with test sequences.—
In order to gain a better understanding of the relation
between statistical scaling properties of the sequences
(e.g., a, v, and & for sequences with Lévy distribution)
and their locations on the complexity plane, we utilized
artificially constructed families of sequences with differ-
ent Lévy parameters. The construction of an artificial
sequence is as follows. We draw a set of numbers out of
a Lévy distribution generator with parameters «, y, and
6. This set is then rounded and used as intervals between
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adjacent events. This sequence is a realization of the
distribution, and there could be variations between differ-
ent such realizations. Hence, for each set of Lévy pa-
rameters, we constructed 32 realizations, calculated R
and SC for each of them, and use R and SC as the
regularity and structural complexity. We have noticed
that there was no difference between R and SC of the
original and shuffled artificial realizations (within frac-
tions of the deviations). That is not surprising as shuffling
does not alter the distribution.

This procedure enables us to construct families of
binary sequences, such that each family covers the entire
range from disordered to purely periodic sequences, as
illustrated in Fig. 3. Each family of sequences for a
given « is composed of one branch on the random side
(R = 0.5) for 6 = “0” (minimum of one bin separation
between events). On the regular side (R = 0.5), each
family has a unique branch for every & # “0”. The
branches are spanned by varying v, and they all meet
for vy >> § at a location on the border between the random
and regular sides and at relatively higher complexity (as
shown in detail in Fig. 3).

Utilizing the complexity plane in search for self-
regulation.—As shown, families of artificially con-
structed sequences exhibit very rich characteristics on
the complexity plane. These characteristic maps can be
utilized to identify features presumably related to self-
regulation motifs of biotic systems. In Fig. 4 we show
typical examples of the evaluated complexity/regularity
for recorded and shuffled sequences, of spontaneous
neuronal activity. Also shown is a corresponding, artifi-
cially constructed sequence with the same «, 7y, and §.
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FIG. 3 (color online). Families of artificially constructed
sequences with both zero-mean and finite-mean symmetric
Lévy distributions of intervals. For each set of Lévy parameters
(a, v, and 8), we present R and SC, using std(R) and std(SC) as
error bars (<13%). Left: « = 2.0;1.6 and 1.2 on both random
and regular sides (6 = 0 and 6 = 20). y spans the character-
istics: for random ones, low regularity is observed at y = 1 and
higher regularity and complexity with increasing . For regu-
lar sequences, y = 1 corresponds to high regularity (R — 1)
and higher y lowers the regularity while increasing the com-
plexity. For a given «, the regular branches meet the random
branch at high complexity and intermediate regularity.
Right: The behavior of the regular branches for the same «
and different 6 = 0, 5, 10, 20. Note that all the regular branches
meet together at the same location where the random branch
crosses.
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FIG. 4 (color online). Utilizing the complexity plane to study
recorded activity. The solid lines are from Fig. 3. The dark solid
dots represent different segments of in vitro recorded activity
(over the course of an hour), SC = 0.24 (std 0.02). The dark,
open circles are the means of 5 different shufflings of each of
the segments, SC = 0.16 (0.01). The dark, solid rectangle is the
mean of artificially constructed sequences with the same
parameters [11], SC = 0.15 (0.07). The statistical p values of
recorded versus shuffled is 1 X 1078, recorded versus artificial
is 1.8 X 1073, and shuffled versus artificial is 0.76. Using light
open and solid circles, we present the same set for a different
experiment [correspondingly, SC =0.15 (0.01), SC = 0.12
(5 X 1073), and SC = 0.11 (0.01); p values: 1.6 X 1073, 1.4 X
1074, and 0.41].

While these three types of sequences have very similar
regularity, the recorded ones have significantly higher
complexity than the shuffled sequences—as is clearly
seen in the figure. Moreover, the complexity of the
shuffled sequences is very similar to that of artificially
constructed ones with matching Lévy parameters—the
typical difference is within the standard deviation among
different realizations. We studied ten different networks
(one of 102 neurons, three of 10%, and six of 10°), each
prepared from a different mixture of animal cells. For
each network, we analyzed 12 sequences of 4096 bins.
The number of SBEs per sequence ranges between 100—
400, which is sufficient for the required statistics
(SBEs > /Ny;,). In addition, all tested sequences ap-
peared to be located not at arbitrary locations on the
complexity plane, but at special positions where the
branches from the order and disorder sides cross. We
propose that the above might reflect self-regulation of
the activity, whose measure can be associated with the
change in complexity upon shuffling the sequence while
the regularity is sustained. In this regard, we also found
that the complexity of simulated, modeled network dy-
namics (abiotic nonautonomous) does not change upon
shuffling, and its regularity-complexity values are similar
to those of artificially constructed sequences with match-
ing parameters. We note that the modeled networks are
composed of neurons with dynamical threshold con-
nected via presynaptic dynamics, but lack additional in-
herent regulation, e.g., by glia cells [10].

Concluding remarks.—We found that, for hierarchical
sequences, the variance of the VF exhibits a maximum
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for a specific word length. This time window defines the
time width of the bursts of SBEs. It also serves as the time
bin for construction of the binary sequence for the next
level, in which an event (““1”) is a burst of SBEs. Thus, the
approach presented here can be extended for quantifying
also the notion of functional complexity, which refers to
the cross regulations of the dynamical activities at differ-
ent levels [6,8]. For that we can evaluate the changes of
the position on the complexity plane of a given level as
induced by another one.
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