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Self-Sustained Activity in a Small-World Network of Excitable Neurons
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We study the dynamics of excitable integrate-and-fire neurons in a small-world network. At low
densities p of directed random connections, a localized transient stimulus results either in self-
sustained persistent activity or in a brief transient followed by failure. Averages over the quenched
ensemble reveal that the probability of failure changes from 0 to 1 over a narrow range in p; this failure
transition can be described analytically through an extension of an existing mean-field result.
Exceedingly long transients emerge at higher densities p; their activity patterns are disordered, in
contrast to the mostly periodic persistent patterns observed at low p. The times at which such patterns
die out follow a stretched-exponential distribution, which depends sensitively on the propagation

velocity of the excitation.
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Recent research in complex networks has provided
increasing evidence for their relevance to a variety of
physical, biological, and social phenomena [1-3]. Two
distinct types of topology have been particularly useful
in providing insights into the implications of complex
connectivity: scale-free networks [3], characterized by
the existence of a small number of hubs with high
coordination number, and small-world networks [1],
characterized by the presence of shortcuts that link
two randomly chosen sites regardless of the distance
between them.

So far, most work on complex networks has focused on
their topological and geometrical properties; less atten-
tion has been given to the properties of dynamical sys-
tems defined on such networks. The interplay between the
intrinsic dynamics of the constituent elements and their
complex pattern of connectivity strongly affects the col-
lective dynamics of the resulting system. For instance,
the addition of shortcuts induces a finite-temperature
phase transition even in the one-dimensional Ising model
[4], and the introduction of unidirectional shortcuts can
change the second-order phase transition in the two-
dimensional Ising model into a first-order one [5]. In a
system of coupled oscillatory elements, the introduction
of shortcuts enhances synchronization [6], while the in-
troduction of hubs eliminates the threshold for epidemic
propagation [7].

The coexistence of shortcuts and regular local connec-
tions characteristic of small-world networks (SWNs)
mimics a salient feature of the circuitry in the cortex
[8-13], where experimental observations of excitatory
traveling waves [11] provide evidence of some degree of
local connectivity, while it is also recognized that long-
range excitatory connections are present [10,12]. Our goal
is to explore the influence of this complex connectivity on
the dynamics of neuronal circuits; to this purpose, we
choose a minimal model. The underlying network is
modeled as a SWN with unidirectional shortcuts that
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reflect the nonreciprocal character of synaptic connec-
tions, and the excitable neurons are modeled as leaky
integrate-and-fire units. We find that even this simple
model exhibits a rich repertoire of distinct dynamical
behaviors as a function of the density p of added short-
cuts: a low p regime characterized by persistent periodic
activity that is bistable with the quiescent state, a tran-
sition to failure with increasing p, followed by a reemer-
gence of long-lasting disordered activity. We note that a
SWN with unidirectional shortcuts has been considered
in a different regime by Lago-Fernandez et al. [14,15] to
address the possibility of rapid synchronization among
conductance-based neurons of the Hodgkin-Huxley type.
The model considered here consists of a one-dimen-
sional array of N integrate-and-fire neurons (IFNs) in
which a SWN topology is created through the addition
of a density p of unidirectional long-range couplings. The
membrane potential of the IFNs is determined by

dv,
-
" dt

=—Vitlxut gsynzwij‘s(t - tﬁ‘m) - TD)- (1
J.m

A neuron fires whenever its voltage exceeds 1; the voltage
is then reset to 0. The external current is chosen to satisfy
I« < 1; in this regime the IFNs are not oscillatory, but
excitable. The last term models input currents due to
presynaptic firing as a delayed impulse: if w;; is nonzero,
then neuron i receives a pulse input of amplitude g,
with a delay 7p after neuron j has fired its mth spike at
time tﬁm). The synaptic conductance is chosen to satisfy
Loy + geyn > 1, so that a single input suffices to sustain
firing activity. The local connections are modeled here as
nearest-neighbor couplings (w;;+; = 1) that define an
underlying regular lattice. The long-range connections
result from randomly adding rather than rerouting [1] a
fixed fraction pN of unidirectional couplings w;; = 1 to
generate a SWN topology.

At p = 0, any excitation sufficient to cause a neuron to
fire will generate two pulses that propagate through the
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FIG. 1. Raster plot (top) and instantaneous firing rate (bot-
tom) for a system with N = 1000, /oy, = 0.85, g¢yy = 0.2, 7, =
10, 7p = 1, p = 0.1. Same parameter values are used in sub-
sequent figures unless noted otherwise.

regular lattice in opposite directions with velocity v =
1/7p, and either exit the system or annihilate each other,
depending on boundary conditions. No persistent activity
results in either case. However, self-sustained activity
may arise for nonzero p, as shown in Fig. 1. Persistence
relies on the reinjection of activity via a shortcut into a
previously active domain that has by then recovered; this
reinjection can occur only if the shortcuts are unidirec-
tional. For a fixed value of p, any particular network
realization has a different connectivity graph that may
or may not sustain persistent activity. We typically aver-
age over 2000 realizations to calculate the probability
of persistent activity; the complementary probability of
failure to sustain activity is shown in Fig. 2 (inset) as a
function of the density p of random connections for four
different system sizes. In this regime, the probability of
failure is an increasing function of p that crosses over
from O to 1 with increasing steepness as the size N of the
system increases.

Failure to sustain activity is a simple consequence of
the intrinsic dynamics of the neurons. Pulses travel out-
wards from an initial activity seed and spawn new pulses
at a rate that increases with p. A currently inactive neuron
can fire again only if enough time has elapsed from its
preceding firing to allow for a recovery to V =1 — gy,
A single input will be able to elicit a spike only if the
elapsed time exceeds T(l), with

I

TV = 7 1n<—e“ ) )
K " Iext + n8syn — 1

If activity recurs to a given site too rapidly, the neuron
will fail to produce a spike, and the pulse of activity will
die out. A critical density p., for the transition from self-
sustained activity to failure can be estimated from

Ta(per) = Ty, 3)
where T4(p) is the time needed for the activity to spread
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FIG. 2 (color online). Inset: Failure rates for 7, = 1.0 and
different system sizes N. Main: Failure rates normalized by
Per(N) [ef. (3) and (4)].

across the whole network. At a fixed velocity for pulse
propagation, this time corresponds to the largest distance
across the network. This distance has been calculated for
bidirectional shortcuts using a mean-field approach [16];
when extended to the case of unidirectional shortcuts it
results in

Yl Y] 1+ )22 ]

An implicit expression for p., and its dependence on the
system size N and the propagation velocity v follows from
combining Egs. (3) and (4); for large N, p..(N) o InN.
Failure rate curves as a function of [p — p..(N)1/p.(N),
shown in Fig. 2, cross at the theoretically predicted value.
This observation, together with the increased steepness of
these curves with increasing N, indicates that a well-
defined transition to failure occurs in the thermodynamic
limit.

This well-defined transition to failure occurs only for
sufficiently fast waves, i.e., for short delay 7. For larger
7p the dynamics of the system become quite more com-
plex, and the fraction of realizations that fail before a
fixed time (7, = 2000 in Fig. 3) becomes a nonmono-
tonic function of p. While at low p the firing patterns
are highly regular (cf. Fig. 1) and all failures occur within
one or two cycles of the initial activity, for higher p the
patterns are more disordered (cf. Fig. 4) and the activity
can persist for a very long time before failure.

1 n 1
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FIG. 3. Failure rates after t,,,, = 2000 for 7, = 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8 (left to right); N = 1000.
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FIG. 4 (color online). Raster plot (top) and instantaneous
firing rate (bottom) of neurons with ISI > TI(;) (black) and
ISI< T [gray (red online)] for 7, = 1.5 and p = 1.0.
Dotted line is the total firing rate.

Consequently, the distribution of failure times, shown
in Fig. 5, exhibits an increasingly long tail for longer
delay times.

To understand the persistence of activity beyond p,,., it
is important to recognize that the result for the critical
density p.,(N) hinges on the assumption that each neuron
receives but a single excitatory input during each cycle of
network activity. Its recovery time is therefore given by
Tg), which sets a lower bound for the interspike interval
(ISI). While this assumption is well satisfied for small p,
it does not hold for p = O(1). In fact, the likelihood that a
neuron has n incoming shortcuts follows a multinomial
distribution such that the fraction of neurons receiving
two incoming connections grows from about 0.05% at
p = 0.1 to about 30% at p = 1. Neurons that receive n
inputs can have a recovery time as short as T;e"). Figure 4
reveals that such neurons, with ISIs lower than Tg), play a
crucial role in maintaining network activity in the regime
p = 1. While neurons with ISIs greater than Tg) (shown
black in Fig. 4) can go through silent epochs with near-
zero activity, neurons with shorter ISIs [gray (red online)
in Fig. 4] may fire 2 or 3 times during a network cycle and
carry over the network activity across these silent epochs.
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FIG. 5 (color online). Failure-time distribution. Inset:

Cumulative distribution of failure times at p = 1 for 1.5 =
7p = 1.7. Main: Failure rates at 5, 10, 20, 40, and 100 multiples
of Tg) = 28.3 (bottom to top). Symbols are averages over 2000
realizations.
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The persistence of activity beyond p,., depends sensi-
tively on 7p; this reflects the fact that persistence at
higher densities p is due to chains or trees of neurons
that bridge the silent epochs due to their multiple inputs.
Since activity propagates with a fixed speed, a chain of
multiple-input neurons of given length can bridge a time
interval proportional to 7p. Thus, as 7, increases, ever
shorter chains can contribute to bridging a silent epoch of
given duration; the likelihood for failure will decrease
accordingly. This picture is, of course, overly simplistic:
whether a topological chain can be utilized as a dynami-
cal bridge over a given silent epoch depends on the
amount and timing of the inputs it receives, which in
turn depend on the recent history of the entire network.
Simulations reveal that the identity of the neurons that
form the “bridging” dynamical chains varies from cycle
to cycle in an irregular way. This implies that the effec-
tive utilization of a dynamical chain over one cycle does
not guarantee its availability on the next cycle. Therefore,
even systems that persist for long times may still have a
finite probability of failing.

The cumulative failure distribution function F(z),
shown in Fig. 5 for various values of 7p, exhibits a long
tail and is well fit with stretched exponentials: F(¢) =
folrp) — Ce™® with B = 0.4 (dotted lines). Even
though the fits are based on runs up to ¢ = 300000
for 7p = 1.65 and 7p = 1.7, they do not provide a
value of f.,(7p) accurate enough for establishing whether
true persistent activity exists for a small fraction of
the network realizations [0.97 =< f(7p = 1.65) = 1].
Strikingly, the dependence of F(f) on the delay time
exhibits a high degree of structure, suggestive of “‘reso-
nances” at values of 7, for which some chains and trees
can be optimally utilized.

One of the salient features of the emergent dynamics of
the model is persistent self-sustained activity at low den-
sities p of shortcuts. In this regime, the network is, in
fact, bistable between ““off”” and “‘on’ states, and can be
switched between them with sufficiently large stimuli,
as illustrated in Fig. 6. The synchronous stimulation of
a sufficiently large number of neurons while the network
is in the on state increases the level of activity and
effectively pushes the network to the right of the failure
transition (cf. Fig. 2), causing a transition into the
off state.
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FIG. 6 (color online). Raster plot for p = 0.10 and k = 5.
About 10 adjacent neurons are stimulated synchronously at
t = 250; about 20% of the neurons are activated at ¢t = 750.
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To address the fact that real neuronal systems are noisy,
the simulation shown in Fig. 6 includes Gaussian fluctua-
tions in the membrane potential; their amplitude is chosen
so as to cause the neurons to spike irregularly at a low
rate. To keep the noisy spiking of a single neuron from
generating a traveling pulse and initiating the on state, we
adjust the synaptic conductance so that several adjacent
neurons must fire in rapid succession in order to propagate
a pulse of excitation. The network topology is modified
accordingly: we extend the local coupling to include up to
2k neighbors (w;;+; = 1 for j = 1, ..., k) and model long-
range connections via a population of intermediate ex-
citatory neurons that both receive input from and project
to multiple adjacent neurons. Under these conditions,
spontaneous activity is highly unlikely to initiate travel-
ing pulses. However, a sufficiently large stimulus, syn-
chronous across several neurons, can again turn the state
of elevated activity on and off (cf. Fig. 6); bistability is
thus robust with respect to noise.

Network bistability has been hypothesized to be the
neural correlate underlying the type of short-term mem-
ory known as working memory in the prefrontal cortex of
monkeys and humans. Much more realistic and physi-
ologically plausible models of cortical layers have been
studied within the context of working memory (e.g., [17]).
Yet, not much attention has been given to heterogeneities
in network topology or to long-range excitatory connec-
tions. The work presented here suggests that closer atten-
tion be given to the role of connectivity as an additional
factor that contributes to the generation of the persistent,
active state associated with working memory.

In conclusion, we have investigated the effect of
incorporating random unidirectional shortcuts to a one-
dimensional network of locally coupled integrate-and-
fire neurons. We find that even a very low density of
shortcuts suffices to generate persistent activity from a
local stimulus through the reinjection of activity into
previously excited domains. As the density of shortcuts
is increased, the substantial decrease in the effective
system size characteristic of small-world networks causes
a crossover into a regime characterized by failure to
sustain activity for essentially all network configurations.
For sufficiently slow propagation velocities of the activity
and sufficiently high shortcut densities, an intriguing
second crossover occurs into a regime in which the activ-
ity still fails but only after often exceedingly long and
strongly chaotic transients.

The complex dynamical phenomena we find in this
extremely simple model are based on a robust mecha-
nism: propagating pulses of activity that are sustained by
branching and reinjection. We therefore expect that more
realistic models of neuronal networks, which may include
multiple ion channels and continuous synaptic currents as
well as inhibitory coupling, will show qualitatively the
same behavior upon the addition of shortcuts if they
originally support propagating pulses of activity [18]
that annihilate upon collision. Preliminary computations
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show that the failure transition persists if the length of the
shortcuts is limited by L, > T,(el) /7p [19]; this network
is not truly a SWN. If the SWN is obtained by rerouting
rather than adding connections, the transition is less
pronounced [19]. Recently, similar networks have been
used to simulate epileptic activity in hippocampus [20]
and bursting in the pre-Boétzinger complex [21]. The
phenomena reported here should also be accessible in
excitable chemical systems [22], where shortcuts could
be implemented using video feedback.
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