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Vortex Fluctuations in the Critical Casimir Effect of Superfluid and Superconducting Films
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Vortex-loop renormalization techniques are used to calculate the magnitude of the critical Casimir
forces in superfluid films. The force is found to become appreciable when the size of the thermal vortex
loops is comparable to the film thickness, and the results for 7 < 7. are found to match very well with
perturbative renormalization theories that have been carried out only for 7 > T.. When applied to a
high-T, superconducting film connected to a bulk sample, the Casimir force causes a voltage difference
to appear between the film and the bulk, and estimates show that this may be readily measurable.
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Critical fluctuations in a finite-size superfluid lead to a
free-energy difference between the finite-size system and
the bulk. If there is a connection between the two, such as
between a saturated helium film and a bulk liquid reser-
voir, forces (known as Casimir forces, in analogy with
size-limited electromagnetic fluctuations) will develop
that lead to a thinning of the film in the vicinity of the
superfluid transition, an effect which has been observed
experimentally [1,2]. Existing theories of the effect are
incomplete: perturbative e-expansion theories [3] are able
to calculate the force only in the nonsuperfluid region
T>T, and the maximum amplitude predicted for
Dirichlet boundary conditions is about a factor of 50
times smaller than the observed maximum [2]. The super-
fluid regime T < T, is apparently far more difficult for
the perturbation theories, and such calculations have not
yet been attempted.

We show here that vortex excitations [4,5] are the
source of the critical fluctuations giving rise to the criti-
cal Casimir force, and that vortex renormalization tech-
niques provide a very simple means of calculating the
force in the superfluid phase T < T.. The force becomes
appreciable when the size of the thermally excited vortex
loops becomes comparable to the film thickness, and the
results for periodic boundary conditions match very well
with the perturbation theories at 7.. When the loops
become larger than the film thickness there is then a
crossover to two-dimensional Kosterlitz-Thouless (KT)
vortex pairs, and this leads to a prediction that the KT
superfluid transition will take place at a temperature only
slightly higher than the point where the Casimir force
begins to be measurable: in helium films nearly the entire
dip in thickness will occur in the normal state above Tkry.

We also propose that an analogous Casimir force
should appear at the junction between a high-T,. super-
conducting film and the bulk superconductor. In this case
the force will take the form of an electrical potential
difference appearing between the film and the bulk, due
to a transfer of Cooper pairs from the film to the bulk that
balances the Casimir energy difference. Rough estimates
show that this may be a readily measurable voltage (mi-
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crovolts), and could be a useful probe of the high-T.,
superfluid transition.

The difference in free energy per unit area between
the film of thickness L and the bulk is given by 6F =
L(f, — f), where f}, and f are the free energies per unit
volume of the bulk and the film, respectively. In the
vortex-loop renormalization scheme these free energies
[5] can be written as an integral over the average loop
diameter a, and the difference is then
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where a is the bare core diameter ( = 2.53 A for helium
parameters [6]), U(a) is the renormalized loop energy [4],
and BL is the maximum loop size in the film; a compari-
son [6] with a finite-size path-integral Monte Carlo simu-
lation gave 8 = 0.75. In Ref. [4] it was noted that from
the scaling relation for the superfluid density the
Boltzmann factor can be written in the form
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where K, = li’p,ay/m?kyT is the dimensionless super-
fluid density. Figure 1 shows an evaluation of Eq. (1) as a
function of the film thickness L, using the loop recursion
relations in Ref. [4], for several reduced temperatures
near T.. Very close to T, there is a crossover from ex-
ponential to algebraic decay in L, since at T, the asymp-
totically exact solution of the recursion relation is
K, = Dy(ay/a), where Dy, = 0.3875 is a universal con-
stant [4,5] (the equivalent of 2/7 in the KT theory).
Inserting this into Egs. (1) and (2) gives O6F/kgT =
A/L? precisely at T,., where A = —1/(472Dy3%). This
is exactly the form initially predicted by Fisher and
DeGennes [7] from scaling arguments, where the univer-
sal constant A is known as the Casimir amplitude. With
B =0.75 we find A = —0.155, in very reasonable agree-
ment [8] with the value A = —0.20 found in the
e-expansion results for periodic boundary conditions
[3]. Asin Ref. [6] our calculation is equivalent to periodic
boundary conditions, since we assume that the superfluid
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FIG. 1. Free-energy difference between bulk and film as a
function of the film thickness L, for several reduced tempera-
tures t = (T, — T)/T..

density is a constant across the film, with no variation at
the wall or free surface. Figure 2(a) shows the free-energy
scaling function ® = L28F /kgT, plotted as a function of
the scaling variable L/¢ where & = ay/K, is the bulk
correlation length, the size of the largest loops being
thermally excited. The solid line is the vortex-loop result
from evaluating Eq. (1), and where for plotting purposes
we have taken ¢ positive for 7 < T,.. When the maximum
loop size becomes comparable to the film thickness the
free-energy difference decreases rapidly, with a finite
slope at T, where L/& = 0. The dotted curve is the
e-expansion result [3] for periodic boundary conditions,

o
o
o

T T T
—— Vortex-loop renormalization
=== € expansion (periodic b.c.)

o o

= o

(e} w
T T

Free energy scaling function ©
=}
7
T

5
B
o
B
Y 5
/ Y K a)
"
. *
ee

0.0 T T T T

o Tir -

-0.3F _
T o b)

Casimir force scaling function ¥

FIG. 2. (a) Free-energy scaling function versus L/&, where &
is the bulk correlation length, taken to be positive for T < T.
and negative for T > T,.. (b) Casimir force scaling function.
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normalized by the ratio of the Casimir amplitudes,
0.155/0.20. It is clear there is good agreement between
the two calculations, with the finite slope at 7, match-
ing well.

The Casimir force F. leading to the film thinning is the
derivative of the free-energy difference, and is most con-
veniently written [3] in terms of a scaling function 4,
F,= —08F/dL = kzT9/L>. Figure 2(b) shows the re-
sults for the scaling function, which can be extracted
from the experimental data as in Ref. [2]. This cannot
be directly compared with the experimental results, how-
ever, since the superfluid density in a real film falls to zero
at the boundaries, and hence Dirichlet boundary condi-
tions rather than periodic should be applied. The depres-
sion of the superfluid density at the surfaces also has the
effect of shifting the transition temperature downward
from the bulk critical temperature 7, by an amount
dependent on L, T, = T.(L). It should be possible in
further work with the vortex-loop theory to account for
the depressed superfluid density by calculating the excess
loop density near a wall [9].

A further effect which must be taken into account is
the crossover from 3D to the 2D KT transition. In the
above calculation the iterations in the film have been
stopped when the loop size reaches the film thickness,
but actually at that point the loops intercept the bounda-
ries and turn into vortex pairs at longer length scales.
Adding these excitations to the above Casimir calculation
is easily carried out [9] by matching the loop recursion
relations to the Kosterlitz recursion relations [10] for the
vortex pairs at the crossover length SL. The areal super-
fluid density o is related to p, resulting from the loop
recursion relations by o, = p,L, and the fugacity of the
pairs is set equal to the loop fugacity at that length scale.
The core diameter of the pairs is a,, the effective core
diameter of the loops at the crossover [4,5], which is
proportional to the correlation length, and hence is of
the order of the film thickness L.

With these inputs the KT recursion relations are then
iterated to macroscopic length scales. The superfluid den-
sity jumps to zero at the temperature Tkt indicated in
both Figs. 2(a) and 2(b). Tkt is a function of the scaling
variable L/&, as shown previously in Ref. [9] where
agreement was found with finite-thickness scaling of
the KT transition [11]. Since the film thinning also begins
to occur when the correlation length is comparable to the
film thickness, it is not surprising that the KT transition
occurs close to the onset of the film thinning, with nearly
all of the film thinning occurring in the normal state
above Tkr. By also iterating the Kosterlitz free energy
along with the recursion relations, the 2D contribution to
the Casimir forces can be evaluated. We find that for thick
films (L/ay ~ 100) this is negligible compared to the
contribution from the loops, since the Kosterlitz free
energy for the vortex pairs is proportional to a.? =~
L2, reducing the pair free energy per unit area by a
factor of (ay/L)*> compared to that of the loops. An
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important experimental check of these predictions for
the KT onset point will be to measure the superfluid
density simultaneously with the film thinning and check
whether Tkt is coincident with the onset of thinning.
Although again the present results apply only for the
case of periodic boundary conditions, it is likely that
both T, and Tkt scale in just the same way for Dirichlet
boundary conditions.

A similar Casimir force should also be present near the
phase transition of a high-7,. superconducting thin film
connected to a bulk sample of the same material. There is
now considerable theoretical and experimental evidence
that the high-T'. transition is also a vortex-loop transition
entirely similar to that of helium [4,12,13]. To give a
concrete example of this we show in Fig. 3 a fit of the
vortex-fluctuation theory of Chattopadhyay and Shenoy
[12] to recent experimental data [14] for the superfluid
fraction of a Bi,Sr,CaCuO, (BSCCO) epitaxial film of
thickness 610 A. This film (labeled curve B in Ref. [14]) is
slightly overdoped, with a T, of 84.9 K. At low tempera-
tures vortices are not thermally excited, and the only
excitations that affect the superfluid density are the nodal
quasiparticles. Fitting to the data in the range of 5—20 K
gives a “bare” superfluid fraction p%/p = 1 — AT? with
A =7.5X10"*K2, and this provides a good descrip-
tion up to about 60 K where the vortices take over. The 72
decrease of the superfluid fraction is the form expected
for d-wave quasiparticles in the dirty limit [15].
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FIG. 3. Superfluid fraction in a BSCCO film, with data from

Ref. [14]. The dashed curve is the background from the nodal
quasiparticles and the solid curve that from single-layer vortex
pairs and loops; the dash-dotted curve indicates the location of
the KT jump. The schematic figure above the plot indicates the
progression with temperature of the 2D single-layer pairs, 3D
anisotropic loops, and the crossover back to 2D vortex pairs.
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Above 60 K the initial vortex excitations are single-
layer pancake-antipancake pairs [12]. These are particu-
larly important in BSCCO due its strong anisotropy, with
an anisotropy factor at small length scales yy = &;/&, =
50 [16], where &(= 25 Aat T =0) and &, are the cor-
relation lengths in the directions parallel and perpendicu-
lar to the CuO planes. Modified KT recursion relations
that include the linear potential from the Josephson cores
are iterated from an initial pair separation a, = &(0) as
in Ref. [12], except that the bare superfluid fraction is
taken to be that of the nodal quasiparticles above. The
only fitting parameter is the core energy of a pancake
vortex; the fit to the data gives a value of the core energy
over the bare superfluid density E./K, = 1.5, in units
kgT. This is quite comparable to the value of 2.2 found
in helium films [17].

At the length scale ro = 7yga, there is then a crossover
to vortex loops, which initially are quite elliptical due to
the strong anisotropy, as shown in Fig. 3. The starting
fugacity and superfluid density of the loops are matched
to those of the 2D pairs at 7, and for a bulk sample the 3D
loop recursion relations are then iterated to scales greater
than the coherence length, where the superfluid density
becomes constant. The result for a bulk sample is shown
as the solid curve in Fig. 3, in excellent agreement with
the film data at least to within a few degrees of T..
Beginning about 2 K from 7T, the recursion relation for
the anisotropy factor [12] shows that it scales rapidly
towards 1, so that purely circular loops are excited at
large length scales. In this limit, where p,/p < 0.1, the
superfluid exponent becomes [5] v = 0.6717, the XY
model value. The temperature range where the XY critical
behavior can be observed in BSCCO is considerably
smaller than in other high-7, materials because of its
large anisotropy factor.

The reason the film data falls away from the predicted
line for the bulk is likely due to a crossover to the 2D KT
transition, which will occur when the loop size (the minor
axis) becomes comparable to the film thickness, as dis-
cussed above for helium films. For this case the superfluid
density and fugacity are matched at the scale 0.5L, to
better account for the depressed superfluid density at the
surfaces in the experiments. The 2D KT recursion rela-
tions are then iterated to larger length scales. The KT
transition occurs quickly after the crossover; the dash-
dotted line in Fig. 3 shows the universal jump of the
superfluid density to zero, which coincides well with
the deviation of the film data from the bulk curve. The
experimental data are not expected to show a sharp jump
to zero, since they were taken at a rather high frequency
of 80 kHz. It is well known that this leads to a finite-
frequency broadening [11,18] quite similar to the behav-
ior seen in the data here.

The critical Casimir free-energy difference between a
BSCCO film and bulk can now be calculated in just the
same manner as for helium films. The quasiparticle and
single-layer pair contributions are the same in the film
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FIG. 4. Schematic of an experiment to measure the voltage
difference between film and bulk, using two Josephson
junctions.

and bulk, and cancel; the KT pairs give a negligible
contribution. The difference is entirely from the loop
size being cut off by the film thickness, and the result
for periodic boundary conditions is essentially the same
as in Fig. 2(a). The free-energy difference leads to a
transfer of Cooper pairs from the film to the bulk, a net
number SN electrons per unit area of the film; this gives
rise to an electrical potential difference oV that appears
at the interface between the film and the bulk. Since the
total electrochemical potential u + ¢V must be a con-
stant throughout the system, the free-energy difference is
proportional to the electrical potential difference, 0 F =
(p — pp)8N = —e8VEN, where 6V = V), — V. But the
number of Cooper pairs that transfer must also be propor-
tional to the voltage difference [19], 6N = —2N(Ey) X
L(mp — pmy) = 2N(Ep)LeSV, where N(Ep) is the density
of single-spin electronic states at the Fermi surface.
Combining these gives a prediction for the voltage differ-

ence 8V =+/—8F/[2¢2N(Er)L]. This can be crudely
estimated for a BSCCO film 600 A thick by taking a
maximum OF/kgT, =~ A/L> with A= —0.15, T, =
85 K, and N(Ep) = 1 X 10%/Jm?, yielding a maximum
6V = 30 wV. This is the estimate for periodic boundary
conditions and not Dirichlet, but we note that the experi-
mental results in helium films appear to give an even
larger value of A than used here.

It may be possible to measure this voltage with the
schematic experiment shown in Fig. 4, where two high-T.
Josephson junction contacts equilibrate with the chemical
potential in the film and the bulk, and the voltage differ-
ence 6V across them can be measured with a low-T,
SQUID voltmeter. This technique has been used to mea-
sure voltage differences in low-T,. superconductors [20] to
a resolution of better than nanovolts, and it should be
possible to apply the same technique to the Casimir
voltage measurement. The electrodes of the two Joseph-
son junctions need to have a higher 7. than the bulk or
film; they can be either a different high-7,. material or the
same material but closer to optimal doping. Observation
of this voltage would give a sensitive new probe of the
high-T, phase transition, and would allow measurements
of the perpendicular coherence length near the transition,
since the voltage is appreciable only when the coherence
length equals the film thickness.

In summary, we have shown that the critical Casimir
effect in superfluid and superconducting films results
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from the finite-size limitation of vortex-loop fluctuations
in the film. This is the first calculation of the effect in the
superfluid phase; the ease of evaluating Eq. (1) using the
loop renormalization should be contrasted with the ex-
treme complexity of traditional perturbative methods that
prevent the calculations from being carried out below T..
For periodic boundary conditions the loop result matches
with the perturbation theories at 7., but a full comparison
with experiments will require extension of the theory to
Dirichlet boundary conditions.
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