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Most of the fractions observed to date belong to the sequences � � n=�2pn� 1� and � � 1�
n=�2pn� 1�, n and p integers, understood as the familiar integral quantum Hall effect of composite
fermions. These sequences fail to accommodate, however, many fractions such as � � 4=11 and 5=13,
discovered recently in ultrahigh mobility samples at very low temperatures. We show that these ‘‘next
generation’’ fractional quantum Hall states are accurately described as the fractional quantum Hall
effect of composite fermions.
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(1)
flux of 2Q, in units of �0 � hc=e, through the surface.
Electrons confined in two dimensions, when subjected
to a strong magnetic field, form a quantum fluid that
exhibits the remarkable phenomena of integral and frac-
tional quantum Hall effects [1,2], namely, quantized Hall
resistance plateaus at RH � h=�e2 with integral and frac-
tional values of �. The integral quantum Hall effect
(IQHE) is explained as a property of uncorrelated elec-
trons, resulting from a quantization of the kinetic energy
of electrons into Landau levels in the presence of a mag-
netic field. The fractional quantum Hall effect (FQHE),
on the other hand, is a manifestation of a strongly corre-
lated quantum fluid. At very strong magnetic fields, elec-
trons fall into the lowest Landau level (LL) and the
physics is entirely governed by the repulsive Coulomb
interaction. Many essential properties of this quantum
fluid can be explained by postulating that electrons in
the lowest LL minimize their interaction energy by cap-
turing an even number (2p) of quantized vortices each to
turn into composite fermions (CF’s) [3], which experi-
ence an effective magnetic field and form their own
Landau-like levels, termed ‘‘CF-quasi-Landau levels.’’
The number of occupied CF-quasi-Landau levels, ��, is
related to the filling factor of the lowest electron LL, �,
according to the formula � � ��=�2p�� � 1�. In particu-
lar, the IQHE of composite fermions (�� � n) provides an
explanation for the FQHE of electrons at RH � h=�e2,
with � � n=�2pn� 1�.

The observation of fractions such as 4=11 and 5=13
[4–7] points to new physics beyond the integral quantum
Hall effect of composite fermions. It has been appreciated
that the residual interaction between composite fermions
can, in principle, cause such fractions [3,8], in the same
way as the interaction between electrons produces the
FQHE. For example, consider composite fermions carry-
ing two vortices (p � 1). If they were completely non-
interacting, only � � n=�2n� 1� would be obtained.
However, there is a weak residual interaction between
composite fermions. If it happens to be of a form that
produces a fractional QHE of composite fermions at

� m
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(m � integer), then that would result in new electron
fractions in the range 2=5 > � > 1=3, given by

� �
3m� 1

8m� 3
: (2)

These include the newly observed fractions [9]. (Of
course, many more fractions can be constructed in this
manner [8].)

This qualitative picture is intuitively appealing and
indicates that the next generation FQHE is possible at
least for some model interaction between composite fer-
mions. However, to confirm this scenario, it is important
to carry out quantitative tests to determine if the FQHE
of composite fermions will occur for the actual residual
interaction between composite fermions, a remnant from
the Coulomb interaction between electrons. A FQHE at �
requires that the state here be incompressible, that is, have
a uniform ground state with a gap to excitations. One can
ascertain incompressibility from either exact numerical
diagonalization on small systems, or ‘‘CF diagonaliza-
tion’’ [10] (outlined below) for larger systems. Extensive
studies of � � 4=11 as a function of the number of
electrons, N, have found that the state is incompressible
for N � 12 and 20 but compressible for N � 8, 16, and 24
[10–14]. While the message was mixed, it was on the
whole interpreted to mean that the results do not support,
in the thermodynamic limit, a fully spin-polarized
FQHE at � � 4=11 [10]. That conclusion, however, is
incompatible with experiments [4,5], which show a clear
evidence for a fully polarized FQHE at � � 4=11. We
explain below the origin of the intriguing behavior for
finite systems, why it does not rule out incompressibility
in the thermodynamic limit (contrary to our previous
assertion), and then go on to write explicit wave functions
to confirm, quantitatively, that the new fractions indeed
are well described as the FQHE of composite fermions.

The calculations below consider N electrons on the
surface of a sphere, moving under the influence of a radial
magnetic field B produced by a Dirac monopole of
strength Q at the center, which produces a net magnetic
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TABLE I. The gaps at � and ��, determined from CF and
exact diagonalization, respectively, at several filling factors.
Only the gaps of incompressible states are shown. N is the total
number of particles and �NN is the number of particles in the
second LL for the state at ��. The gaps are quoted in units of
e2=�l0. The statistical uncertainty from Monte Carlo is shown
in parentheses.

� �� 2Q N �NN Gap (�) Gap (��)

18 8 3 � � � � � �
4
11

4
3 29 12 4 0.010(1) 0.035

40 16 5 � � � � � �

51 20 6 0.006(2) 0.024
62 24 7 � � � 0.000 64

5
13

5
3 33 14 6 0.003(1) 0.035

46 19 8 � � � � � �

20 9 4 � � � � � �
7
19

7
5 39 16 6 0.006(2) 0.016

58 23 8 � � � 0.0018
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(2Q is an integer according to Dirac’s quantization con-
dition.) CF diagonalization refers to determining the low-
energy spectrum by numerically diagonalizing the
Hamiltonian in the correlated CF basis:

fP LLL

2p
1 
�

Q� g: (3)

Here f
�
Q� g is an orthogonal basis of N-electron states at

Q� � Q� p�N � 1�. We are interested in the filling fac-
tor range 2=5 > � > 1=3, for which the CF filling at ��

lies between one and two (with p � 1). We include all
electron basis states at Q� which have the lowest LL
completely occupied and the second partially occupied.

1 is the wave function for a fully occupied Landau level,
and P LLL denotes projection into the lowest Landau level
(LLL). The basis states in Eq. (3) are in general not
linearly independent. We extract an orthogonal basis fol-
lowing the Gram-Schmidt procedure and then diagonal-
ize the Coulomb Hamiltonian to find eigenstates and
eigenenergies. The Hamiltonian matrix elements are
evaluated by the Metropolis Monte Carlo method. (All
energies are quoted in units of e2=�l0, where � is the
dielectric constant of the background semiconductor,
and l0 


��������������
�hc=eB

p
is the magnetic length.) The statistical

uncertainty is determined by performing many ( � 10)
Monte Carlo runs, with 0:8–1:0� 106 iterations in each
run. The basis states are, by construction, in the lowest
Landau level, so our results provide strict variational
bounds on the ground state energy in the limit B ! 1.
The eigenstates have definite orbital angular momentum,
L, with L � 0 for uniform ground states. The ground state
obtained by CF diagonalization will be denoted �0

�.
Details of lowest LL projection and diagonalization can
be found in the literature [10,15]. The state at filling factor
� of Eq. (2) is obtained at flux values given by [10]

2Q �
8m� 3

3m� 1
N �

12m� �m2 � 3�

3m� 1
; (4)

which ensures limN!1N=2Q � � � �3m� 1�=�8m� 1�.
It has been shown in the past that the CF diagonalization
method produces essentially the same results as exact
diagonalization (see, for example, Ref. [16]).

We begin by pointing out the flaw in the reasoning of
Ref. [10] that led to the conclusion that the fully spin-
polarized state at � � 4=11, etc. is compressible in the
thermodynamic limit. It was implicitly assumed in
Ref. [10] that if a state is incompressible in the thermody-
namic limit, then all its finite size realizations must also
be incompressible. This criterion was used because there
was no known exception to it for FQHE in the lowest
Landau level, at fractions of the form � � n=�2pn� 1�.
However, the criterion is not universally valid, and FQHE
states in higher LL’s provide an explicit counterexample.
Consider the electron state at �� � 1� ���, with �NN par-
ticles forming a state with filling factor ��� in the second
LL. Given that the filled lowest LL is inert, one might
expect that the state in the second LL at ��� is quite similar
to the corresponding state at filling factor ��� in the lowest
196806-2
LL, but, in reality, there are striking differences between
the two [17,18], for reasons not fully understood at
present. Consider the example of ��� � 1=3. For the 1=3
state in the lowest LL, the system is incompressible for all
N, whereas for the 1=3 state in the second LL, the ground
state is compressible (L � 0) for �NN � 3 and 5, and almost
compressible for �NN � 7. (See Ref. [17] and Table I. The
gap for �NN � 7 is a factor of 37 smaller than the gap at
�NN � 6.) Furthermore, the ground state wave functions at
1=3 in the lowest and second LL’s are rather different; the
largest overlap between them is obtained for seven par-
ticles, which is only �0:6 [17]. Because of such strong
fluctuations as a function of N it was initially thought [18]
that exact diagonalization studies rule out FQHE at ��� �
1=3 in the second LL. Study of bigger systems revived the
possibility of incompressibility in the thermodynamic
limit [17], and FQHE at 1=3 in the second LL has been
observed experimentally [19], albeit with a small gap of
�100 mK.

Could something similar be happening at the newly
observed fractions? That would be quite natural from the
CF perspective, which relates the new fractions (e.g., � �
4=11) to the FQHE of composite fermions in higher CF-
quasi-LL’s (e.g., �� � 4=3).We now proceed to investigate
the issue quantitatively. To begin with, Table I gives the
gaps at several values of � given by Eq. (2), obtained by
CF diagonalization. (No gap is given when the ground
state is not uniform.) The behavior is remarkably analo-
gous to that at �� � 1� ��� [Eq. (1)]. For example, includ-
ing the electrons in the lowest LL, the state at �� � 4=3 is
compressible for N � 8 and 16 particles ( �NN � 3 and 5)
and almost compressible for N � 24 ( �NN � 7); these
match the particle numbers for which � � 4=11 has
been found to be compressible. The states at 5=13 and
7=19 are similar to those at 5=3 and 7=5. The analogy
between � and �� strongly suggests that, in spite of finite
196806-2
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size fluctuations, the state at � is incompressible in the
thermodynamic limit. It would be desirable to study
systems at � � �3m� 1�=�8m� 3� larger than those re-
ported here and in Ref. [10], but that is not possible with
the present day computers.

We now concentrate on those particle numbers for
which the states are incompressible, which we believe
contain the physics of incompressibility in the thermody-
namic limit. A secure understanding of the origin of a
FQHE state rests on identifying an accurate wave func-
tion that reveals its microscopic physics. Wave functions
for the new FQHE states can be constructed based on the
above physical picture following the standard procedure,
which allows for a microscopic test of the scenario. For
the ground state at � � �3m� 1�=�8m� 3� the trial wave
function is given by

�tr
� � P LLL


2
1
�� ; (5)

where 
�� is the L � 0 Coulomb ground state at �� �
1�m=�2m� 1�, obtained by exact diagonalization.
Because multiplication by 
2

1 attaches two vortices to
each electron to convert it into a composite fermion, the
wave function �tr

� is interpreted as the FQHE of compos-
ite fermions at �� � 1�m=�2m� 1�. (Although amena-
ble to an intuitive interpretation through composite
fermions, the actual wave function is extremely intricate.)
As another reference point, we also present results for the
trial wave function

�0tr
� � P LLL


2
1


0
�� ; (6)

where 
0
�� is obtained by placing in the second LL the

Coulomb ground state at ��� � m=�2m� 1� of the lowest
Landau level. �tr

� is derived from the m=�2m� 1� state in
the second LL, whereas �0tr

� is analogous to the m=
�2m� 1� state in the lowest LL.

Because �0
� are very accurate [16], the overlaps and

energies given in Table II establish that �tr
� are also very

accurate. (The overlap of 0.86 is significantly large for a
system with N � 20 particles.) A direct comparison with
exact results is possible for the 12 particle state at � �
4=11. For this system, the energies from the CF theory,
E0 � �0:441 05�9� and Etr � �0:440 88�4�, deviate from
the exact energy, �0:441 214 [14] by 0.04% and 0.08%.
The level of agreement is highly significant for a system
with 12 particles and similar to that for the accepted trial
wave functions for the ordinary FQHE at � � n=�2pn�
1�. It gives an unambiguous indication, at a microscopic
level, of a direct connection between the physics of the
FQHE at � and ��.

Thus, the analogy between the FQHE in the lowest LL
at � [Eq. (2)] and the FQHE in the second LL at �� �
1� ��� [Eq. (1)] not only explains the qualitative behavior
as a function of N but also produces accurate wave
functions for the incompressible ground states at �.
These facts taken together give us confidence that the
new fractions are a manifestation of the FQHE of com-
posite fermions.
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Even though the finite system incompressible states
help us confirm the physics of the new fractions, an
accurate determination of the excitation gaps is not pos-
sible because we do not have enough points for a reliable
extrapolation to the thermodynamic limit. The gap in
Table I for the largest available incompressible system
at a given filling can be taken as a very crude estimate
for the thermodynamic gap. The gaps for the new
FQHE states are more than an order of magnitude smaller
than the gaps at � � 1=3 and 2=5 in the lowest LL,
explaining why the new FQHE states are much more
fragile, more readily destroyed by disorder or thermal
fluctuations, than the ordinary FQHE states at 1=3 and
2=5, in spite of their close proximity. The smallness of the
gap is illustrative of the fact that the residual interaction
between composite fermions is much weaker than the
interaction between electrons. (All gaps being compared
are theoretical gaps, without including the effects of finite
thickness or disorder.)

There has been much recent theoretical work on the
new FQHE states. Pairing of composite fermions has been
advanced [20] as an alternative possible mechanism for
the next generation fractions, and another theoretical
paper [21] has studied the FQHE of composite fermions
using a Hamiltonian approach [22]. However, the quanti-
tative accuracy of the methods used in these works has not
been established at a level required for the issue of
stability of the delicate new FQHE states, and, in par-
ticular, neither of these approaches constructs an explicit
wave function which can be directly compared with the
exact ground state wave function known for small sys-
tems. An effective field theory approach [23] is also not
best suited to address the stability of a FQHE state,
although it may illuminate certain properties thereof
assuming it exists.

We discuss briefly certain approximations made in our
work. (i) Our main assumption is the neglect of mixing
between the CF-quasi-LL’s. Our preliminary studies,
which relax the assumption by enlarging the basis (by
allowing for LL mixing at Q�), find that the corrections
are very small and do not change the qualitative results.
Indeed, the fact that �0

� is very close to the exact ground
state is indicative of the insignificance of CF-quasi-LL
mixing. (ii) We are also neglecting, throughout, a mixing
between electronic Landau levels at Q, but that is pre-
sumably negligible at the highest magnetic fields where
the next generation FQHE has been observed [4,5]. (iii)
We have also studied the correction due to a finite trans-
verse thickness of the electron system, which modifies the
form of the effective two-dimensional interaction be-
tween electrons; it lowers all energies but does not alter
significantly either the qualitative nature of the ground
state or the form of the ground state wave function. (iv)
The Zeeman energy has been assumed to be frozen. Spin
related physics can also generate new fractions, associ-
ated with partially spin-polarized states, which would be
observable at relatively low magnetic fields [24]. The
196806-3



TABLE II. Comparison of trial wave functions �tr
� and �0tr

� with �0
� for several incom-

pressible states at three filling factors. (See the text for definitions.) The overlaps are defined as
O � h�0

�j�
tr
�i=

�������������������������������������
h�0

�j�
0
�ih�

tr
�j�

tr
�i

p
and O0 � h�0

�j�
0tr
� i=

���������������������������������������
h�0

�j�
0
�ih�

0tr
� j�

0tr
� i

p
. E0, Etr, and E0tr

are the Coulomb energies per particle for �0
�, �tr

� , and �0tr
� , respectively. E0 were reported in

Ref. [10].

� N O O0 E0 Etr E0tr

4
11 12 0.993(2) 0.51(1) �0:441 05�9� �0:440 88�4� �0:436 70�4�

20 0.86(1) 0.278(8) �0:430 27�5� �0:429 75�5� �0:427 05�6�
5
13 14 0.973(1) 0.365(3) �0:444 00�9� �0:443 74�9� �0:439 51�3�
7
19 16 0.990(4) 0.009(2) �0:438 08�4� �0:438 06�4� �0:432 83�5�
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states observed in Refs. [4,5] are insensitive to changes in
the Zeeman energy and survive to very high magnetic
fields, indicating that they are fully spin polarized. An
early hint of fractions outside the sequences n=�2pn� 1�
in very low density samples [7] may involve partial spin
reversal.

An extension of the above analogy between FQHE at �
and �� has implications for future fractions. There is good
evidence [25] that the Coulomb interaction does not sta-
bilize FQHE of electrons at � � �nn�m=�2m� 1� for �nn >
1, but fractions like ��� � 1=5 and ��� � 4=5 may occur in
the third LL. Assuming similar behavior for composite
fermions, this would rule out fully spin-polarized FQHE
at electron fractions of the form ��2 �nn� 1�m� �nn�=�4� �nn�
1�m� �2 �nn� 1�� with �nn > 1, but leave open the possibil-
ity of FQHE at apparently more complicated fractions
like � � 11=27 and 14=33 in the filling factor range
2=5< �< 3=7. Charge density waves of various types
are also predicted to occur for certain filling factors in
higher quasi-LL’s of composite fermions [26].
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results. Partial support of this research by the National
Science Foundation under Grant No. DMR-0240458 is
acknowledged.
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