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The optical absorption spectrum of the carbon �4; 2� nanotube is computed using an ab initio many-
body approach which takes into account excitonic effects. We develop a new method involving a local
basis set which is symmetric with respect to the screw-symmetry of the tube. Such a method has the
advantages of scaling faster than plane-wave methods and allowing for a precise determination of
the symmetry character of the single-particle states, two-particle excitations, and selection rules. The
binding energy of the lowest, optically active states is approximately 0.8 eV. The corresponding exciton
wave functions are delocalized along the circumference of the tube and localized in the direction of the
tube axis.
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A wealth of extraordinary results concerning the me-
chanical and electrical properties of carbon nanotubes
(NTs) have been reported in the last few years [1]. Until
recently, however, their optical properties have not re-
ceived the same attention; experimental work has often
been hindered by low emission efficiency, and the inter-
pretation has been complicated by the fact that tubes of
different species and orientation are normally mixed
together in the same sample, making it difficult to assign
the measured spectra to a single NT species.

Very recent experiments have indicated that these
limitations can be overcome. Improved optical efficiency
has been obtained by isolating NTs in porous materials
[2], in solution [3], or on patterned substrates [4]. It was
possible to assign optical spectra to specific NTs via their
characteristic vibrations in resonant Raman [5] or in
near-field experiments [6]. The observation of electrically
induced optical emission from a carbon NT field-effect
transistor (FET) [7] has paved the way for a new class of
single-molecule experiments and devices. These advances
therefore establish optical spectroscopies as powerful
characterization tools for NTs. Nanotubes also hold great
promise for novel nanoscale opto-electronic and photonic
applications [7] because the optical gap of NTs spans a
very large frequency range, which overlaps the range of
interest in the field of telecommunications.

In spite of such fervent interest in this subject, the
fundamental nature of optical excitations of NTs is not
yet understood. The possible relevance of excitonic ef-
fects in these systems was pointed out in a pioneering
paper by Ando [8]. In general, it is well known that the
electron-hole interaction plays a crucial role in one-
dimensional systems, not only in the ideal case [9], but
also in realistic systems such as semiconductor quan-
tum wires [10] or polymer chains [11] where excitons
dominate the optical spectra. The binding energies are,
however, very sensitive to the spatial extent of the single-
particle wave functions and to the (anisotropic) dielectric
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quantities to be sensitive to size and geometry. Moreover,
given the peculiar nature of the electronic states, even the
smaller diameter NTs cannot be regarded as pure, one-
dimensional systems. It is therefore extremely difficult to
estimate the actual relevance of excitonic effects without
a realistic calculation of their optical excitations.

In this Letter, we present an efficient ab initio approach
to compute the spectra, exciton energies, and wave func-
tions of carbon NTs. Such an approach includes the full
three-dimensional dependence of the electron states and
interactions. Our formalism exploits a fully symmetrized
Gaussian basis set and allows us not only to reduce the
system size and computation time considerably, but also
to profit from the selection rules involving a new quantum
number, which comes into play in the symmetry charac-
terization of the problem.

As a preliminary step, a calculation based on the
density-functional theory within the local-density ap-
proximation [13] is performed with a plane-wave basis,
pseudopotentials, and supercells [14], and the band states
 nk�G� are calculated in Fourier space. These states are
then projected onto a set of basis functions, which are
symmetrized sums of Gaussian orbitals centered on the
atoms. The basis is constructed to be simultaneous eigen-
states of the commuting operators ĜG1 and ĜG2. ĜG1 repre-
sents a discrete translation of the tube in the z direction by
the length of the cell T. ĜG2 is the screw-symmetry op-
eration consisting of a combined rotation and translation:
a rotation by an angle of 2	=N, where N is the number of
hexagons in the supercell and a translation along the z
direction by �M=N�T, where M depends on the geometry
and size of the tube (for details, see Ref. [1]). The basis
functions have the form
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The functions f�nlm�r�g are Gaussians defined as
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FIG. 1. Band structure in the extended zone scheme. Each
panel represents a FBZ. The solid line represents a continu-
ation of a band with character h � 1 in the first Brillouin zone,
and the dashed line begins with a band with character h � 2.
The top of the valence band is represent by a horizontal dot-
dashed line.
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with considerable success in similar calculations for ex-
tended systems [15]. � � 1; 2 labels one of the two in-
equivalent atoms in the unit cell. fq � e2	iq and
gqh � e2	i�Mq	h�=N are the eigenvalues of the operators
ĜG1 and ĜG2, respectively. h is a new quantum number,
analogous to the azimuthal quantum number m, which
ranges from 1 to N.

The quantities needed for the calculation of both
the random phase approximation (RPA) dielectric func-
tion [16] and the Bethe Salpeter equation (BSE) matrix
[17–19] are the Gaussian transition elements Ank;n

0k0
 �

hnkjk�k
0;hd

 jn0k0i. They are given by
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where  "nk is the Gaussian component of the wave func-
tions of the system [greek letters ";#;  ; . . . denote the
quadruple ��; n; l;m�], and hd � h�nk� � h�n0k0� is the
difference between the quantum number h for the states
nk and n0k0. The three-basis-function integrals
Mkh;k�k0;hd;k0h0

" # are given by
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The phase-multiplied three-center integrals Lij;i
0j0

" # are

calculated from the pure three-center integrals IRR0R00
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ACB , where km � e�2	im=N. �, �0,
and �00 are the basis vectors (atomic positions in the
reduced cell) for Gaussians ", #, and  .

The evaluation of the Gaussian transition elements and
the three-basis-function integrals in Eqs. (2) and (3) is the
most expensive part of the calculation and, for a given
precision, scales as ��NNk�2 � R2, where Nk is the num-
ber of k points, and R is the radius of the tube. This
scaling is considerably faster than that of a plane-wave
calculation, which scales as �TR4 log�TR2�. Our method
has the additional advantage of scaling independently of
the cell length T and allows for a calculation of tubes such
as the �4; 2� NT, which have unusually long cell lengths.

The expressions for the BSE matrix are simple func-
tions of the matrix elements in Eq. (2). We distinguish
two cases: (i) If the light is polarized along the tube axis,
z, the selection rule for h is h � h0. For this polarization
we include only those transitions which conserve h. In
so doing, the BSE matrix is reduced to N indepen-
dent blocks. (ii) The same holds for circularly-polarized
light with polarization vector êe� � 1=

���
2

p
�êex � iêey�, with

the only difference being that the selection rule is h �
h0 � 1. The direct term for both polarizations is

Kd
cvk;c0v0k0 � Ack;c

0k0
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The exchange term is

Kx
cvk;c0v0k0 � Ack;vk" �Ac

0k0;v0k0
# ��V"#0;h�ck��h�vk�; (5)
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where h�ck� � h�vk� � 0��1� for the êez�êe�� polariza-
tion, and W"#

q;h and V"#q;h are the screened and bare
Coulomb interactions expressed in the symmetrized basis
of Gaussians (the Einstein sum convention is used to sum
over the greek indices) calculated following the proce-
dure in Ref. [15]. The screening is calculated in RPA.
Building the matrices in Eqs. (4) and (5) does not require
much computation time because the greek indices range
from 1 to the number of Gaussians (fifty in this work),
which is small and does not depend on system size.

The exciton wave function for the nth excitation is

��n��re; rh� �
X

cvk

��n�
cvk� vk�rh��

� ck�re�; (6)

where the expansion coefficients ��n�
cvk satisfy the BSE:

��Eck � Evk�1cc01vv01kk0 	 Kcvk;c0v0k0 ��
�n�
c0v0k0 � �n�

�n�
cvk;

(7)

with Kcvk;c0v0k0 � 2Kx
cvk;c0v0k0 � Kd

cvk;c0v0k0 . Since we are
interested only in the effect of the electron-hole inter-
action on the spectra, we use local-density approxi-
mation (LDA) energies for the Enk of Eq. (7) without
quasiparticle corrections [20]. The imaginary part of
the dielectric function is given by 22�!� � 4	=!2 �P
njMnj

21�!��n�, where Mn�
P
cvk�

�n�
cvkhvkjv �ejcki.

In this Letter, the momentum operator is used in lieu of
the velocity operator, since the former is easier to express
in Gaussians. The difference in another carbon-based
system, i.e., diamond, has been shown to be a 15% to
20% effect in the peak intensity of absorption spectrum
[21], but has a negligible effect on the peak position.

We focus on the carbon �4; 2� NT [22]. Figure 1 shows
its electronic band structure. It is represented in the ex-
tended zone scheme to clearly show how the bands unfold
and how they are related to the quantum numbers h and
196401-2
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k. Every panel corresponds to a full Brillouin zone
(FBZ). The entire band structure is shown with light
grey lines. The thick, solid (dashed) lines are lines of
constant character h � 1 (h � 2). In this scheme, it is
clear how to represent the set of all optically permitted
transitions for both polarizations (êez and êe�). For the êez
polarization, only the vertical transitions from the solid
valence line to the solid conduction line and those from
the dashed valence line to the dashed conduction line are
optically allowed. For the êe� polarization, only the ver-
tical transitions from the solid to dashed line, or vice
versa, depending on the helicity of the polarization, are
optically allowed. Because of symmetry, both helicities
(êe	 and êe�) yield the same spectrum. In the noninteract-
ing theory, these transitions can be represented using a
reduced joint density of states (RJDOS). It is obtained by
excluding from the joint density of states all optical
transitions forbidden by symmetry. The RJDOS for both
polarizations is shown in the top two panels of Fig. 2. The
corresponding absorption spectra are shown in the bot-
tom two panels. They are computed with 24 k points in
the FBZ and a broadening of 0.07 eV. The BSE matrix
computed with this k-point sampling and for the energy
range of interest is small with dimension � 300� 300.
For the êez polarization, the absorption spectrum with
excitonic effects (solid line of bottom left panel of
Fig. 2) has three peaks: the lowest two peaks correspond
to bound excitons with binding energies Eb � 0:8 eV and
Eb � 0:2 eV, while the third one is an unbound reso-
nance. This is consistent with the value of 1.0 eV found
for an �8; 0� nanotube in another work [23].

To gain a better understanding of the nature of the
excitonic states giving rise to these three peaks, we con-
sider the three corresponding excitonic states with the
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FIG. 2. The left panels show the RJDOS and the optical
absorption for the êez polarization and the right panels for the
êe	 polarization. In both bottom panels, the solid line represents
the spectrum with electron-hole interaction, and the light grey
line the spectrum in the single-particle picture. The dot-dashed
line represents the spectrum with exchange term only. All
spectra are computed with a broadening of 0.07 eV, without
self-energy corrections.
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highest oscillator strength Mn. Figure 3 shows, in the
extended zone scheme, the weighted contributions of
the optical transitions to these states (bottom three pan-
els). State 1 is made up of transition A, shown in the band
diagram (top panel). State 2 is derived from transitions A
and C, and state 3 from transitions A and B. Transitions A,
B, and C correspond to the Van Hove singularities in the
RJDOS labeled in the top left panel of Fig. 2. Note that the
resonance represented by state 3 is coupled with transi-
tions in the continuum region, appearing in Fig. 3 (bot-
tom panel) as two sharp peaks, each corresponding to a
single Bloch vector.

From the bottom left panel of Fig. 2, one can directly
compare the absorption with both direct and exchange
terms included in the BSE (solid line), the absorption
with exchange term only (dot-dashed line), and the ab-
sorption without excitonic effects (shaded line): it is
evident that excitonic effects radically alter the absorp-
tion spectrum. Moreover, most of the effect comes from
the direct term, as the exchange term alters the spectrum
by a small amount.

In the bottom right panel of Fig. 2, we represent the
absorption spectrum for the êe	 polarization; the spec-
trum calculated using the noninteracting theory is greatly
suppressed when both exchange and direct terms are
included in the BSE Hamiltonian. This phenomenon
was discovered in another theoretical work on nanotubes
[24] using time-dependent local-density approximation
[25]. To see if such a suppression is to be attributed to the
exchange term [equivalent to local field effects (LFE)] or
to the direct electron-hole Coulomb attraction, we plot an
additional curve with the exchange term only (dot-dashed
line). Figure 2 shows that the suppression is largely due to
the exchange term and that the direct term affects the
spectrum less, in agreement with Ref. [24]. The main
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FIG. 3. The top panel shows a portion of the band structure in
the extended zone scheme with the relevant bands [solid, bold
line (h � 1) in Fig. 1]. The bottom three panels show the
weighted contributions of the transitions, which comprise three
excitonic states that correspond to the first three peaks in the
absorption spectrum for the êez polarization.
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FIG. 4 (color). Exciton wave functions for the two lowest,
optically active excitons of the �4; 2� carbon NT. The top panel
shows the �h � 0 exciton (Eb � 0:8 eV) and the bottom panel
the �h � 1 exciton (Eb � 0:6 eV). The color plots represent
the projection on the tube lateral surface of the probability of
finding the hole when the electron is fixed in the origin slightly
above one of the atoms. z is the tube axis. 4 is the circum-
ference direction.
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effect of the direct term is to open up a significant
peak below the lowest Van Hove singularity, corre-
sponding to a bound �h � 1 exciton with binding energy
Eb � 0:6 eV.

We plot the exciton wave function ��n��re; rh� [see
Eq. (6)] by fixing the position of the electron: Figure 4
shows the two lowest lying, optically active excitons for
the êez (�h � 0) and the êe	 polarization (�h � 1). Both
excitons are localized in the direction of the tube axis, z,
but are delocalized along the tube circumference, 4. This
behavior is in agreement with the variational calculation
of Ref. [26]. The wave function for the even parity (and
hence, optically inactive) �h � 0 exciton located 0.1 eV
below the first absorption peak (not shown) is similar to
the lowest optically active (odd parity) exciton.

In conclusion, we have developed an efficient method
for performing BSE calculations on NTs of all sizes and
chiralities that uses a local, symmetry-based approach.
Applying this method to a �4; 2� NT, we have shown
that excitonic effects are important and have quantita-
tively determined these effects. For the êez polarization
(�h � 0), the excitonic effects give rise to three en-
hanced peaks, and the lowest excitation is 0.8 eV below
the onset of the single-particle continuum. The corre-
sponding exciton is localized along êez, but delocalized
along the tube circumference. For the êe	 polarization
(�h � 1), the exchange part of the BSE matrix drasti-
cally suppresses the absorption spectrum. The direct part
opens up a large peak 0.6 eV below the single-particle
singularity, corresponding to a bound, localized exciton.
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