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Nonperturbative Renormalization-Group Study of Reaction-Diffusion Processes
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We generalize nonperturbative renormalization group methods to nonequilibrium critical phenomena.
Within this formalism, reaction-diffusion processes are described by a scale-dependent effective
action, the flow of which is derived. We investigate branching and annihilating random walks with
an odd number of offspring. Along with recovering their universal physics (described by the directed
percolation universality class), we determine their phase diagrams and predict that a transition occurs
even in three dimensions, contrarily to what perturbation theory suggests.
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ing of nonequilibrium phenomena suffers from the lack of
a systematic theoretical framework. Indeed, out of equi-
librium, the absence of a free-energy functional from

method [10]—is a continuous implementation, on suc-
cessive momentum shells, of Wilson’s block-spin con-
cept. For equilibrium systems, it consists in building a
The description of many physical, chemical, and bio-
logical systems resorts to nonequilibrium many-particle
models. Their dynamical evolution is governed by a
Markov process ruled by microscopic transition proba-
bilities which violate detailed balance. The ensuing mac-
roscopic behaviors are hence intrinsically much richer
than in equilibrium. Many models exhibit phase transi-
tions between stationary states, which have unveiled the
existence of universal properties. The characterization
of the nonequilibrium universality classes constitutes a
prevalent issue of statistical mechanics. In this respect,
reaction-diffusion processes provide a simple and thus
valuable framework to investigate nonequilibrium critical
phenomena. They generically describe diffusing particles
that can undergo different microscopic reactions [1,2].
The most common universality class encountered is that
of directed percolation (DP) [3,4]. It can be simply
achieved through a reaction-diffusion model endowed
with the following processes:

2A! ; pair annihilation at rate �; (1)

A! 2A generation of an offspring at rate �; (2)

A! ; spontaneous decay at rate �: (3)

The competition between birth and death gives rise to a
steady state where the density saturates at a constant
value �. The system exhibits a continuous phase transition
between an active (fluctuating) state where � > 0, and an
inactive (absorbing) state where the density vanishes. In
fact, a large variety of models, such as the contact process
[5], Reggeon field theory in particle physics [6], the dimer
poisoning [7], and the autocatalytic reaction models [8],
show the same critical behavior.

Despite considerable successes, the general understand-
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which to draw the probability distribution of steady states
prevents the use of well-established equilibrium methods.
Instead, the master equation should be solved, which is
not feasible in general. Fortunately, it can often be cast
into a path integral representation [9], rooting a field
theory that can be probed with a dynamical renormaliza-
tion group (RG). The usual perturbative techniques con-
sist of expansions in series of a parameter. They have
allowed us to achieve numerous advances in our theo-
retical understanding. Nevertheless, as they rely on the
smallness of a parameter, their validity remains confined
to the vicinity of critical dimensions or to weak coupling
regimes.

We propose in this Letter a powerful alternative, based
on a nonperturbative RG procedure (NPRG) [10–12].
This method avoids the previous pitfalls as it does not
intrinsically depend on the magnitude of a parameter.
Moreover, the microscopic interactions can be traced all
along the NPRG flow, and related to the long-range
properties, thus giving access to nonuniversal quantities,
such as equations of state and critical temperatures [13].
In this work, we generalize the NPRG methods to non-
equilibrium systems and derive very generic, model-
independent RG flow equations for reaction-diffusion
processes. We exploit these equations to investigate
branching and annihilating random walks (BARW)
with an odd number of offspring. We first recover their
universal physics which belong to the DP universality
class. Then, linking the density � of stationary states
with the microscopic rates enables us to push further a
recent analysis by Cardy and Täuber [14]. We predict, in
particular, that a phase transition can occur in three
dimensions, contrarily to what was conjectured.

The NPRG formalism—the effective average action
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sequence of effective actions �k, at the running mo-
mentum scale k, interpolating between the microscopic
HamiltonianH of the system, and its Gibbs free energy �.
This is achieved by adding to the partition function Z a
masslike term �Hk that suppresses the propagation of the
low-energy modes (with wave number q < k) while not
affecting the high-energy ones (q > k). The correspond-
ing free-energy logZk, or its Legendre transform �k, thus
encompasses only the large momentum fluctuations. At
the scale k � �, ��1 corresponding to the underlying
lattice spacing, no fluctuation has yet been taken into
account and �k�� � H, while at k � 0, all fluctuations
have been integrated out and �k�0 � �. An exact RG
equation for the flow of �k is easily derived and underlies
the NPRG formalism [10].We now generalize this formal-
ism to out of equilibrium systems, for which partition
function and Gibbs free energy no longer exist. Despite
this lack, a path integral formulation of the dynamics can
be set up, commonly involving an auxiliary response
field 
��, along with the usual field�. It allows us to define
a generating functional Z for the correlation functions,
and one, �, for the one-particle irreducible correlation
functions. These functionals constitute the building
blocks of an out of equilibrium NPRG. We introduce in
Z a scale-dependent term, analogous to �Hk:

Z k� 
JJ; J� �
Z
D�D 
��e�S�


��;����Sk� 
��;���
R
J��

R

JJ 
��; (4)

where

�Sk �
Z ddp

�2�	d
d!
2�

���p;�!	R̂Rk�p	�T�p;!	; (5)

� denoting the two-component vector � 
��;�	. The 2
 2
matrix R̂Rk is symmetric with zeros on its diagonal and a
masslike function Rk�p	 off its diagonal. The selection of
modes is ensured by imposing that, on the one hand,
Rk�p	 � k2 for p� k; that is Rk acts as an effective
mass—an IR cutoff—for slow modes. On the other
hand, one imposes that Rk�p	 ! 0 for p k, so that
the rapid modes remain unaltered. In this work, we use
Rk�p	 � �k2 � p2	��k2 � p2	 [15] which gives simple
analytical expressions for the momentum integrals. We
emphasize that no cutoff is necessary for time, since the
corresponding integrals are regular and the frequency
dependence can be integrated over (see below). The ef-
fective action �k is defined through the appropri-
ate Legendre transform �k � logZk �

R
J � 
JJ 
  �

�Sk� 
  ; 	, where  ( 
  ) is the mean value of � ( 
��),
defined as the derivative of Zk with respect to (wrt) J
( 
JJ). The mass term �Sk ensures that the proper limits
�k�� � S and �k�0 � � are recovered. The exact flow
equation of �k is then easily derived, similarly to the
equilibrium calculation [10]:

@k�k� 
  ; 	 �
1
2Trf��̂�

�2	
k � R̂Rk�

�1@kR̂Rkg; (6)
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where �̂��2	
k is the field dependent matrix of the second

functional derivatives of �, and Tr stands for matrix trace
over internal indices and integration over the internal
momentum and frequency. Equation (6) is a functional
equation which obviously cannot be solved exactly.
To handle it, one has to truncate �k. Since the critical
physics corresponds to the long distance (q! 0), long
time (!! 0) limit, a sensible truncation consists in ex-
panding �k in powers of gradients [10] and time deriva-
tives. Retaining only the leading order in derivatives, the
functional �k for reaction-diffusion systems reads

�k� 
  ; 	 �
Z
ddrdt�Zk 
  �@t�Dkr

2	 �Vk� 
  ; 	�: (7)

In principle, the three functions Vk, Zk, and Dk depend on
the fields, and their functional form is dictated by the
symmetries of the underlying dynamics. We study in the
following the leading order approximation that consists of
neglecting the field dependence of Zk and Dk [10]. Thus,
we consider only their k dependence, which accounts for
the critical anomalous scalings of the fields, and of time.
Indeed, the anomalous dimension  of the fields is de-
fined such that at criticality,  and 
  scale as k�d� 	=2.
This definition induces that  � �@ lnZk=@ lnk. The ex-
ponent (z� 2) embodies the anomalous scaling between
time and space in the critical scaling regime [16]. It
follows that 2� z � �@ lnDk=@ lnk. We emphasize that
the previous ansatz (7) should qualitatively well encom-
pass the physics of the model and, moreover, provide
accurate estimates of ‘‘static’’ quantities, related to the
potential part. However, this level of approximation is not
expected to give very accurate dynamical exponents, even
less since they are large. Refining these exponents would
require to include the field dependence of Zk and Dk, and
as a further step, to enrich the derivative content of (7)
[13,17,18].

We can now establish the generic flow equations for
reaction-diffusion processes. The flow of Vk is drawn
from Eq. (6), evaluated at a uniform and stationary field
configuration. After integrating over !, one gets

@kVk �
1

2Zk

Z ddp

�2�	d
@kRk��������������������������������������������������

1� �@2 Vk@
2

  
Vk=hk�p	

2�
q ; (8)

where hk�p	 � ZkDkp
2 � Rk�p	 � @2
   Vk. The flow of Zk

(Dk) is obtained taking the q2 (#) part of the flow of
@2
  ; �k�p; #	. These flows depend on the fields, but the
resulting exponents should be identical for any field val-
ues. However, this property breaks down when any trun-
cation is performed [13]. Since, in the reaction-diffusion
models, 
�� vanishes, and the average of � reaches a uni-
form and stationary configuration, it is sensible to define
the exponents at 
  � 0 and  �p; #	 �  0k$

d�p	$�#	.
Derivating Eq. (6) twice wrt 
  ��q;�#	 and  �q; #	
yields, after integrating over the internal frequency,
195703-2
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Z ddp

�2�	d
@kRk�p	

�
hk�p	� hk�p�q	

hk�p	hk�p�q	�Zki#�hk�p	�hk�p�q	�2
�

1

hk�p	
2�Zki#�hk�p	�hk�p� q	�

�
:

(9)
As a first step, we show that these equations allow us to
recover the universal physics of DP and more precisely to
compute the three usually quoted independent critical
exponents z, #, and &. # describes the scaling behavior
of the correlation length near criticality, & that of the
order parameter. A field theoretical action S� 
��;�� can be
derived from the microscopic processes (1)–(3), upon the
introduction of two fields, � and 
��. After their rescaling
and a shift of 
��, one gets [14]

S� 
��;��
Z
ddrdt� 
���@t �Dr2	�� ��� �	� 
��

�
����������
2��

p
� 
���2 �� 
��2	 � ��2 
��2�;

(10)

which is invariant under the simultaneous changes
��x; t	 ! � 
���x;�t	 and 
���x; t	 ! ���x;�t	. The ge-
neric term of the effective potential Vk� 
  ; 	 allowed by
this symmetry reads a)&� ) 
  & � ��1	)�& 
  ) &�, which
can be expressed in terms of the two invariants x �  
  
and y �  � 
  . Thus Vk can be conveniently parame-
trized byUk�x; y	 � Vk� 
  ; 	. By numerically integrating
the flows (8) and (9), we find that for a fine-tuned initial
(�� �), corresponding to criticality, the (dimension-
less) effective potential flows to a fixed function. The
exponents are calculated in the vicinity of this fixed
solution. We first implement the well-known local poten-
tial approximation (LPA); that is, Zk � Dk � 1. The static
exponent # is very accurate in all dimensions, see Table I,
whereas &, deduced from the scaling relation & �
1=2�d�  	, is more imprecise since  � 0 at this order.
We then study the leading order (LO) in derivatives: Zk
and Dk now run with k. The critical exponents are all the
TABLE I. Critical exponents of DP. (a),(b): NPRG calcula-
tions from this work, at the local potential approximation and
at leading order. (c) From Monte Carlo simulations [19].

d (a) LPA (b) LO (c) MC

3 # 0.584 0.548 0.581(5)
& 0.872 0.782 0.81(1)
z 0 1.909 1.90(1)

2 # 0.730 0.623 0.734(4)

& 0.730 0.597 0.584(4)
z 0 1.884 1.76(3)

1 # 1.056 0.888 1.096 854(4)

& 0.528 0.505 0.276 486(8)
z 0 1.899 1.580 745(10)
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more accurate when  and (z� 2) remain small. They
thus deteriorate as the dimension lowers, since  and
(z� 2) then become large. As usual with this method,
more accurate determinations of  and z rely on a proper
description of the momentum and frequency dependence
of the two-point correlation function, which would re-
quire us to implement a richer ansatz for �k [18], as
already emphasized.

We finally come to the most important part of this
work: the study of nonuniversal features of the BARW
defined by the set of the two processes (1) and (2)
(� � 0). Mean field theory predicts the density to reach
a finite saturation value for any positive birthrate �, and
thus the system to be always in the active state.
Nevertheless, simulations [20] have brought out the ex-
istence of a phase transition in this model in d � 1 and
d � 2, invalidating mean field conclusions. Cardy and
Täuber have addressed this question through a field
theoretical perturbative study [14] and provided a partial
answer relevant for small reaction rates �=D and �=D,
and in the vicinity of d � 2. They have shown that fluc-
tuations can indeed induce, for a nonzero critical birth-
rate �c, a dynamical transition to an absorbing state
(belonging to the DP universality class). The underlying
reason for the existence of the transition is that the
combination of (1) and (2) generates under renormaliza-
tion the one-particle spontaneous decay (3). This process
allows the existence of an absorbing state if its renormal-
ized rate�R��;�	 renders�R � �R positive [see Eq. (10)].
In d � 2, this defines a narrow absorbing region below a
critical transition curve given by

�c��	=D / e�4�D=�: (11)

For d > 2, perturbation theory breaks down. However,
since the transition curve Eq. (11) is already infinitely flat
for small �=D in d � 2, and since fluctuations are ex-
pected to be suppressed when the dimension increases, it
has been suggested in [14] that no transition should exist
in d � 3.

We reinvestigate this question using NPRG, which is
neither restricted to small �=D nor to a specific dimen-
sion. We can thus explore the phase diagrams of BARW in
d � 2 and d � 3. They are displayed in Fig. 1.

In d � 2, we find two regimes. For small �=D (typi-
cally below 4) the transition curve is very accurately
fitted by an exponential with a coefficient �11:8, in
agreement with Eq. (11) at a 6% level. For large �=D,
�c��	=D grows linearly opening up a large absorbing
195703-3
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FIG. 1. Phase diagrams of BARW in d � 2 and d � 3.
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phase. In d � 3, we also find two regimes, one with a
linear critical curve, and one without transition, sepa-
rated by a threshold value �=D ’ 30. Let us now give
simple arguments highlighting why a transition must
exist in d � 3, which perturbation theory misses.

When D is large compared with � and �, the mecha-
nism of particle destruction is driven by the pair anni-
hilation occurring when wandering particles meet. While
in d � 2 all the particles can be destroyed through this
mechanism, it is not efficient enough to do so in d � 3.
We thus expect only an active phase at large D in d � 3.
This corresponds to the result of the perturbation theory,
which is indeed valid at small �=D. On the other hand,
in the small D regime where perturbation theory fails,
the mechanism of destruction is dominated by ‘‘self-
destruction’’; that is, particles annihilate with their own
offspring before they can diffuse. This process no longer
requires the random encounter of particles and thus
does not depend on the dimension. We therefore expect
a transition to occur at small D both in two and three
dimensions. These arguments corroborate the phase dia-
grams obtained from the NPRG analysis. Though, rely-
ing on the ansatz (7), we cannot provide a quantitative
estimate of the accuracy of the critical rates in Fig. 1, the
previous arguments reinforce the NPRG ability to cap-
ture the nonuniversal physics of the model over the dif-
ferent diffusive regimes. Moreover, we have performed
numerical simulations, which confirm the existence of a
DP phase transition in d � 3 for large �=D and hence
support our prediction (extensive simulations to quanti-
tatively check the phase diagrams are in progress [21]).

Note that in simulations [20], the implementation of
reaction (2) involves the creation of offspring on neigh-
boring sites, contrary to the on-site birth process under-
lying field theoretical approaches (both [14] and ours).
Though this should not alter the behavior of the model
195703-4
when D is large, it becomes crucial at small D since the
‘‘self-destruction’’ mechanism is then drastically sup-
pressed. This is probably why no transition is found in
d � 3 in these simulations.

In the present work, we have implemented for the first
time NPRG methods in nonequilibrium statistical physics
and derived very generic flow equations for reaction-
diffusion models. This method has allowed us to recover
the universal behavior of directed percolation and more-
over to compute the phase diagrams of BARW. We have
shown that a phase transition exists in d � 3 in these
systems contrary to what suggests perturbation theory.
The formalism developed here offers an as efficient as
promising means of investigation of nonequilibrium
physics. This could give some valuable insight into the
perennial Kardar-Parisi-Zhang problem, describing
roughening transitions in growing interfaces.
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