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An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix
upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projec-
tions. The technique allows treatment of embedded quantum subsystems with a computational cost
scaling linearly with the size of the perturbed region, O�Npert:�, and as O�1� with the total system size.
The method allows efficient high order perturbation expansions, as demonstrated with an example
involving a 10th order expansion. Density matrix analogs of Wigner’s 2n� 1 rule are also presented.
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trast to previous methods that pose a solution implicitly
through coupled equations [16], the new method provides

ments above a numerical threshold scales linearly with
the system size [1,2]. In these cases the matrix-matrix
In electronic-structure theory, significant effort has
been devoted to the development of methods with the
computational cost scaling linearly with system size N
[1,2]. The ability to perform calculations with reduced-
complexity O�N� scaling is an important breakthrough
that opens a variety of new possibilities in materials
science, chemistry, and biology. So far most attention
has been focused on N-scaling methods for computing
the ground state energy. A problem that has been given
little attention is the O�N� computation of response prop-
erties, for example, the polarizability, nuclear magnetic
resonance, Raman intensities, vibrational frequencies,
and the magnetic susceptibility [3]. Also of great interest
is extending O�N� electronic-structure theory to quantum
embedding [4,5], where the computational complexity
scales linearly with the size of a locally perturbed region
O�Npert:� and therefore as O�1� with the total system size.
This allows efficient studies of subsystems, for example,
surface chemistries or the catalytic domains of proteins,
without recalculation of the entire system.

In this Letter, we introduce a general and surprisingly
simple O�Npert:� approach to quantum perturbation theory.
The method makes it possible to study embedded quan-
tum subsystems and response functions to any order,
within linear scaling effort. The approach is based on
recently developed spectral projection schemes for puri-
fication of the density matrix, replacing the conventional
eigenvalue problem in tight-binding or self-consistent
Hartree-Fock and Kohn-Sham theories [6–13].

The orbital-free perturbation theory is based on the
density matrix and avoids wave function or Green’s func-
tion formalism [4,5]. In spirit, it is therefore similar to
the perturbation method by McWeeny [14]. Our method is
likewise related to the work of Bowler and Gillan [15],
who developed a functionally constrained density matrix
minimization scheme for embedding. However, our ap-
proach to computation of the density matrix response is
quite different from previous methods of solutions for the
coupled-perturbed self-consistent-field equations. In con-
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explicit construction of the derivative density matrix
through recursion.

The main problem in constructing a density matrix
perturbation theory is the nonanalytic relation between
the zero temperature density matrix and the Hamiltonian,
given by the discontinuous step function [17],

P � ���I �H�; (1)

which makes expansion of P about H difficult. At finite
temperatures the discontinuity disappears, but instead the
analytic Fermi-Dirac distribution involves problems with
matrix exponentials and the chemical potential.

In linear scaling purification schemes [6–13], the den-
sity matrix is constructed by recursion;

X0 � L�H�;

Xn�1 � Fn�Xn�; n � 0; 1; 2; . . . ;

P � lim
n!1

Xn:

(2)

Here, L�H� � ���I �H� is a linear normalization func-
tion [17] mapping all eigenvalues of H in reverse order to
the interval of convergence �0; 1� and Fn�Xn� is a set of
functions projecting the eigenvalues of Xn toward 1 (for
occupied states) or 0 (for unoccupied states). One of the
most efficient techniques, which requires only a knowl-
edge of the number of occupied states Ne and no a priori
knowledge of � [10], applies the projections

Fn�Xn� �

�
X2
n; Tr�Xn� 
 Ne;

2Xn � X2
n; Tr�Xn�<Ne:

(3)

Purification projection schemes are quadratically conver-
gent, numerically stable, and can solve problems even
with degenerate eigenstates, finite temperatures, and frac-
tional occupancy [11,13]. Thanks to an exponential decay
of the density matrix elements as a function of jr� r0j for
insulating materials, the operators have a sparse matrix
representation, and the number of nonzero matrix ele-
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multiplications, which are the most time-consuming
steps, scale O�N�.

Equivalent to the purification schemes are the sign-
matrix expansions [18]. The general scheme is the same
as in Eq. (2), but the expansion is performed around a step
from �1 to 1 at x � 0.

Our quantum perturbation theory is based on the pu-
rification in Eq. (2). A perturbed Hamiltonian H �
H�0� �H�1� gives the expansion

Xn � X�0�
n �n; n � 0; 1; 2; . . . ; (4)

where X�0�
n is the unperturbed expansion and n are the

differences due to the perturbation H�1� [0 � L�H� �
L�H�0�� � ��H�1�]. It is then easy to construct the per-
turbed projection expansion

n�1 � Fn�X
�0�
n �n� � Fn�X

�0�
n �;

P � P�0� � lim
n!1

n:
(5)

This is the key result of the present Letter and defines our
density matrix perturbation theory. Combining Eq. (5)
with the expansion in Eq. (3) gives the orbital-free re-
cursive expansion [17]

n�1 �

�
fX�0�

n ;ng �2
n; if Tr�X�0�

n � 
 Ne;
2n � fX�0�

n ;ng � 2
n; otherwise:

(6)

Other expansions based on, for example, McWeeny, trace
conserving or trace resetting purification [6,8,11] can also
be included in this quite general approach. However,
Eq. (6) is particularly efficient since it requires only two
matrix multiplications per iteration. Because the pertur-
bation expansions inherit properties from their generator
sequence, they are likewise quadratically convergent with
iteration, numerically stable, and exact to within accuracy
of the drop tolerance [11].

If the perturbed X�0�
0 has eigenvalues outside the in-

terval of convergence �0; 1� the expansion could fail. To
avoid this problem the normalization function L�H� in
Eq. (2) can be chosen to contract the eigenvalues of X0 to
��; 1� ��, where � > 0 is sufficiently large.

A major advantage with the expansion in Eq. (6) is that
for band-gap materials that are locally perturbed, the n
are likewise localized as a result of nearsightedness
[19,20]. The matrix products in Eq. (6) can therefore be
calculated using only the local regions of Xn that respond
to the perturbation. Given that perturbation does not
change the overall decay of the density matrix, the com-
putational cost of the expansion scales linearly with the
size of the perturbed region O�Npert:� and as O�1� with the
total system size.

Density matrix purification does not necessarily re-
quire prior knowledge of the chemical potential, but
once the initial expansion of the unperturbed system is
carried out, the chemical potential is set. The perturba-
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tion expansions of Eq. (5) are therefore grand canonical
[21]. With this in mind, Eq. (6) may be applied to embed-
ding schemes that do involve long range charge flow.

The computation of many materials response proper-
ties requires the calculation of density matrix derivatives
with respect to a perturbation. Grand canonical density
matrix perturbation theory can be used to compute these
response functions. Assume a perturbation of the
Hamiltonian H�0�,

H � H�0� � �H�1�; (7)

in the limit � ! 0. The corresponding density matrix is

P � P�0� � �P�1� � �2P�2� � . . . ; (8)

where the response functions P��� (density matrix deriva-
tives) correspond to order � in �. Expanding the pertur-
bation as in Eq. (6), individual response terms may be
collected order by order at each iteration;

n � ��1�
n � �2�2�

n � . . . : (9)

Keeping terms through order m in � at each iteration,
with �0�

n � X�0�
n , we obtain for � � m;m� 1; . . . ; 1:

���
n�1 �

(P�
i�0 

�i�
n ���i�

n ; if Tr�Xn� 
 Ne;

2���
n �

P�
i�0 

�i�
n ���i�

n ; otherwise:

(10)

These equations give an explicit, quadratically conver-
gent solution of the response functions, where

P��� � lim
n!1

���
n : (11)

Mixed independent perturbation parameters can also be
included.

Equation (10) provides direct explicit construction of
the response equations based on well developed linear
scaling technologies [10,11]. This is quite different from
earlier approaches [16] that pose solution implicitly
through coupled matrix equations, achieving at best
linear scaling with iterative solvers. In a future publica-
tion we develop our theory for the solution of the
coupled-perturbed self-consistent field equations [22].

Higher order expansions of the energy can be calcu-
lated efficiently from low order density matrix terms.
Similar to Wigner’s 2n� 1 rule for wave functions [23]
we have the energy response E � E�0� � �E�1� �
�2E�2� � �3E�3� � �4E�4�, where

E�1� � Tr�P�0�H�1��; E�2� � 0:5Tr�P�1�H�1��;

E�3� � Tr��P�1�; P�0��P�1�H�1��;

E�4� � 0:5Trf��2I � P�0��P�2�P�0�P�1�

� P�0�P�1�P�2��I � P�0���H�1�g:

(12)

The corresponding n� 1 rule for � > 0 is

E��� � ��1Tr�P���1�H�1��: (13)
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To demonstrate the perturbation theory, we present two
examples: the first is based on a local perturbation of a
model Hamiltonian, and the second example illustrates
the ability to calculate higher order response functions.

The model Hamiltonian has random diagonal elements
exhibiting exponential decay of the overlap elements as
a function of site separation on a randomly distorted
lattice. This model represents a Hamiltonian of an insu-
lator that might occur, for example, with a Gaussian
basis set in density functional theory or in various tight-
binding schemes. A local perturbation is imposed on the
model Hamiltonian by moving the position of one of the
lattice sites. Using the perturbed projection expansion of
Eq. (6), a series of perturbations n is generated. In each
step a numerical threshold � � 10�6 is applied as de-
scribed in [11]. The lower inset in Fig. 1 shows the number
of elements above the threshold in n as a function of
iteration. The local perturbation is efficiently represented
with only �50 elements out of 104. Figure 1 also illus-
trates the quadratic convergence and stability of the error.
The error is close to the truncation error of the unper-
turbed density matrix and about 5000 times smaller
compared to first order perturbation theory.

The second example, in Fig. 2, illustrates the pertur-
bation of the Hamiltonian

H � �1
2r

2
x � �k� 1�e��x�XA�

2
� ke��x�XB�

2
; (14)

with respect to the field parameter k 2 �0; 1�, shifting the
Gaussian potential centered at XA (k � 0) to the same
potential, but centered at XB (k � 1). The figure shows the
corresponding change in the density. The average absolute
energy error for k 2 �0; 1� and the two-norm error of the
FIG. 1. The Log�Error� � log10�kX
�0�
n �n � Pexactk2� as a

function of iterations n (N � 100; Ne � 50). The lower inset
shows the number of nonzero matrix elements of n above
threshold � � 10�6. The upper inset shows the nonzero matrix
elements in the perturbation n at convergence.
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density matrix response at k � 1, using Eqs. (10) and (12)
or (13), decay exponentially with expansion order, as
shown in the upper inset. Note the grand canonical per-
turbation theory works effortlessly even up to 11th order
in energy (10th order in density) for this example, since
no states cross the chemical potential for k 2 �0; 1�. For
nonmetals with a band gap, and for fairly weak pertur-
bations, this is generally the case and the theory should
apply. An extension to ab initio calculations is given in a
future publication [22], and a more detailed analysis of
convergence will be given elsewhere.

The present formulation has been developed in an
orthogonal representation. With an N-scaling congruence
transformation [24,25], it is straightforward to employ
this representation when using a nonorthogonal basis. A
change in the inverse overlap matrix S�1 due to a local
perturbation dS is given by the recursion,

�n�1 � �S�1
0 � �n�dS�S�1

0 � �n� � �nS0�n; (15)

where S � S0 � dS, �0 � 0, and S�1 � S�1
0 � limn!1�n.

The equation contains terms only with local sparse up-
dates and the computational cost scales linearly, O�Npert:�,
with the size of the perturbed region. Similar schemes for
the sparse inverse Cholesky or square root factorizations
can also be used [26].

Density matrix perturbation theory can be applied in
many contexts. For example, a straightforward calcula-
tion of the energy difference due to a small perturba-
tion of a very large system may not be possible because
of the numerical problem in resolving a tiny energy
difference between two large energies. With density ma-
trix perturbation theory, we work directly with the den-
sity matrix difference n and the problem can be avoided,
for example, the single particle energy change E �
limn!1Tr�Hn�. Connecting and disconnecting individ-
ual weakly interacting quantum subsystems can be per-
formed by treating off-diagonal elements of the
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FIG. 2 (color online). The change in density for the
Hamiltonian given in Eq. (14) for k 2 �0; 1�. The boundary
conditions are periodic and Ne � 5.
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Hamiltonian as a perturbation. This should be highly
useful in nanoscience for connecting quantum dots, sur-
faces, clusters, and nanowires, where the different parts
can be calculated separately, provided a connection
through a common chemical potential is given, for ex-
ample, via a surface substrate. In quantum molecular
dynamics, such as quantum mechanical–molecular me-
chanical schemes, or Monte Carlo simulations, where
only a local part of the system is perturbed and updated,
the new approach is of interest. Several techniques used
within the Green’s function context also should apply for
the density matrix. The proposed perturbation approach
may be used for response functions [22], impurities,
effective medium, and local scattering techniques
[4,5,27,28]. The grand canonical density matrix pertur-
bation theory is thus a rich field with applications in many
areas of materials science, chemistry, and biology.

In summary, we have introduced an orbital-free grand
canonical perturbation theory for the zero temperature
density matrix, extending quadratically convergent puri-
fication techniques to expansions of the density matrix
upon variation of the Hamiltonian. The perturbation
method allows the local adjustment of embedded quan-
tum subsystems with a computational cost that scales as
O�1� for the total system size and as O�Npert:� for the
region that respond to the perturbation, as demonstrated
in Fig. 1. A quadratically convergent N-scaling recursive
approach to computing density matrix response func-
tions was proposed, and energy expressions to 4th order
in terms of only first and second order density matrix
response were given. The proposed quantum perturba-
tion theory is surprisingly simple and offers an efficient
alternative to several Green’s function or wave function
methods and conventional schemes for solution of the
coupled-perturbed self-consistent-field equations.

Discussions with E. Chisolm, S. Corish, S. Tretiak,
C. J. Tymczak, V. Weber, and J. Wills are gratefully
acknowledged.
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