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Dynamic Criticality in Glass-Forming Liquids
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We propose that the dynamics of supercooled liquids and the formation of glasses can be understood
from the existence of a zero-temperature dynamical critical point. To support our proposal, we derive a
dynamic field theory for a generic kinetically constrained model, which we expect to describe the
dynamics of a supercooled liquid. We study this field theory using the renormalization group (RG). Its
long time behavior is dominated by a zero-temperature critical point, which for d > 2 belongs to the
directed percolation universality class. Molecular dynamics simulations seem to confirm the existence
of dynamic scaling behavior consistent with the RG predictions.
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supercooled fluid in d spatial dimensions is coarse to satisfy detailed balance. To reflect the local nature of
The recipe for making a glass is simple [1]: rapidly cool
a liquid through its melting point to avoid crystallization.
Cool it further, and the liquid eventually becomes so
viscous that it forms a noncrystalline solid, or glass.
Glasses are common in nature, but our theoretical under-
standing of their formation is poor [2]. Here we offer
analytical and numerical results to support the proposi-
tion that the dynamics of glass-forming supercooled
liquids is controlled by a zero-temperature dynamic criti-
cal point.

Our starting point is the real-space description of
supercooled liquids studied in [3,4] and based on ideas
and models originally proposed in [5–7]. In this ap-
proach, the phenomenon of dynamic heterogeneity
[8–10] plays a central role. The link between dynamic
heterogeneity and glass formation is the subject of much
current research. If this link is verified, it will be an
indication that the slow dynamics of glass formers is
governed by dynamic spatial fluctuations (see [11,12]
for alternatives based on thermodynamics), in contrast
to the assumption of homogeneity of mode coupling
theories [13,14].

The microscopic coarse-grained approach of [3,4] re-
lies on two observations: (i) At low temperature very few
particles are mobile, and these mobility excitations are
localized in space; (ii) mobile regions are needed to allow
neighboring regions to themselves become mobile. This is
the concept of dynamic facilitation [5,7]. We show that
this picture can be cast as a dynamical field theory and its
scaling behavior derived from a dynamic renormalization
group (RG) analysis. We find that scaling properties are
determined by a zero-temperature critical point. For the
simple case we consider, and for d > 2, this critical point
is that of directed percolation (DP) [15]. We also show, by
performing extensive molecular dynamics simulations,
that supercooled Lennard-Jones binary mixtures display
scaling behavior consistent with that predicted by RG.

We build an effective microscopic model as follows. A
0031-9007=04=92(18)=185705(4)$22.50 
grained into cells of linear size of the order of the static
correlation length as given by the pair correlation func-
tion. Cells are labeled by a scalar mobility field, ni,
identified by coarse graining the system on a microscopic
time scale. Mobile regions carry a free energy cost, and
when mobility is low interactions between cells are not
important. Adopting a thermal language, we expect static
equilibrium to be determined by the noninteracting
Hamiltonian [7],

H �
XN
i�1

ni: (1)

At low mobility, the distinction between single and mul-
tiple occupancy is probably irrelevant. We assume the
latter case for technical simplicity. The dynamics of the
mobility field is given by a master equation,

@tP�fng; t� �
X
i

Ci�fng�L̂LiP�fng; t�; (2)

where P�fng; t� is the probability that the system has
configuration fng at time t. The local operators L̂Li encode
the existence of local quanta of mobility. For noncon-
served dynamics, they describe the creation and destruc-
tion of mobility at site i,

L̂LiP�ni; t� � ��ni � 1�P�ni � 1; t� � 
P�ni � 1; t�

� ��ni � 
�P�ni; t�; (3)

where the dependence of P on cells other than i has been
suppressed. The rates for mobility destruction, �, and
creation, 
, are chosen so that (2) obeys detailed balance
with respect to (1) at low temperature, 
=� � e�1=T � c,
with c 	 hnii; the brackets indicate a thermal average.
The average concentration of excitations c is the control
parameter of the problem. Ci�fng� is the kinetic constraint
designed to suppress the dynamics of cell i if surrounded
by immobile regions. It cannot depend on ni itself if (2) is
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FIG. 1. Elements of the RG calculation. (a) Gaussian propa-
gator and vertices in the frequency-wave-vector domain corre-
sponding to the terms in the dynamic action (6); time runs
from right to left. (b) Structure of diagrams dictating the
effective couplings. (c) A diagram contributing to the renor-
malization of the effective coupling x.
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dynamic facilitation, we allow Ci to depend only on the
nearest neighbors of i [7] and require that Ci is small
when local mobility is scarce.

The large time and length scale behavior of the model
defined by Eqs. (1)–(3) is derived from the analysis of the
corresponding field theory. The technique to recast the
master equation (3) as a field theory is standard [16,17], so
we only outline the procedure. One introduces a set of
bosonic creation and annihilation operators for each site i,
ayi , and ai, satisfying 
ayi ; aj� � �ij, and passes to a
Fock space defined by a state vector j��t�i 	P

fnigp�n1; n2; . . . ; t�a
y n1
1 ay n22 � � � j0i. The master equation

(3) then assumes the form of a Euclidean Schrödinger
equation, dj��t�i=dt � �ĤHj��t�i, with ĤH �P
iĈCi�fa

y
j ajg�ĤH

�0�
i . The unconstrained piece ĤH�0�

i reads

ĤH �0�
i � ���ai � a

y
i ai� � 
�a

y
i � 1�: (4)

The Hamiltonian (4) describes the creation and destruc-
tion of bosonic excitations with rates 
 and �. The
evolution operator e�ĤHt can then be represented as a
coherent state path integral [17] weighted by the dynami-
cal action

S 
�?i ;�i; t0� �
X
i

Z t0

0
dt��?i @t�i �Hi��

?;���; (5)

where we have suppressed boundary terms coming from
the system’s initial state vector. The fields �?i �t� and �i�t�
are the complex surrogates of ayi and ai, respectively,
while Hi has the same functional form as (4) with the
bosonic operators replaced by the complex fields. At the
level of the first moment, we have hnii � h�ii, so we may
regard �i as the complex mobility field. The last step in
the passage to a field theory is to take the continuum
limit,

P
i ! a�d

R
ddx, �i�t� ! ad��x; t�, and �?i �t� !

�?�x; t�, where a is the lattice parameter.
The definition of the model is completed by specifying

the functional form of the kinetic constraint. The simplest
nontrivial form is the isotropic facilitation function, Ci �P
nj, where the sum is over nearest neighbors of site i.

With this choice we expect the one-spin facilitated
Fredrickson-Andersen (FA) model in d dimensions [5,7]
to be in the same universality class as our model.
Different choices for the operators ĤH�0� and C lead to
field theoretical versions of more complicated facilitated
models. A diffusive ĤH�0�, for example, would correspond
to a constrained lattice gas similar to that of Kob and
Andersen [7,18]; an asymmetric C, to the East model [6,7]
and its generalizations. The dynamic action finally reads

S 
 ���;�; t0� �
Z
ddx

Z t0

0
dt� ����@t �D0r

2 � ��m�0 ��

� �������1�0 � ��1�0 r2��

� �������2�0 � ��2�0 r2� ����

� �������v�0 � �0r
2� ����; (6)
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where we have omitted higher-order gradient terms, and
suppressed boundary contributions coming from initial
and projection states. We also made the shift �? � 1� ���
[17], and defined ��1;2�0 	 2dad�, ��m;v�0 	 2d
, ��1;2�0 	
�ad�2, and �0 	 a2
. We defined D0 	 �0 to emphasize
the emergence of a diffusive term, although in the un-
shifted model there is no purely diffusive process. The
action (6) is the starting point for our RG analysis.We will
leave the technical details to a later paper [19] and here
state only the most important conclusions.

The action (6) has the form of a single species branch-
ing and coalescing diffusion-limited reaction with addi-
tional momentum dependent terms [15]. By integrating
out the response field, we obtain a Langevin equation for
the evolution of �. This equation has a critical point at
c � 0, i.e., T � 0, describing the crossover from an ex-
ponential decay of mobility at finite c, i.e., T > 0, to an
algebraic decay at c � 0. In the absence of noise (corre-
sponding to neglecting terms quadratic in ���), we find that
(6) admits the Gaussian exponents ��G?; �

G
k
; !G� �

�12 ; 1; 1�. Here �? and �k control the growth of spatial
�"?� and temporal �"k� length scales near criticality,
"? � c��? and "k � c

��k , while ! governs the long-
time scaling of the density, n� c!.

These Gaussian power laws are modified by fluctua-
tions which we treat using the RG. Identifying the un-
physical microscopic singularities present in (6) as a
consequence of taking the continuum limit, one invokes
scale invariance and dimensional analysis to extract the
macroscopic scaling; see Fig. 1. We find the following.

(i) The critical point remains at c � 0. There is thus no
finite temperature phase transition. For finite T, and at
asymptotically long length and time scales, the system
will therefore exhibit Gaussian power laws.

(ii) Dimensional analysis shows that the upper critical
dimension of the model is dc � 4. For d � 4, we account
for fluctuations by studying the behavior of the effective
couplings. These couplings come from diagrams such as
those in Fig. 1(b). For 2< d � 4, we find that only the
dimensionless coupling x 	 Ad��v���1�%�&=D2 matters,
where Ad 	 22�d'�d=2	�3� d=2�, & 	 4� d, and % is
an external momentum scale. The system exhibits scale
185705-2
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invariance at the fixed point x� � 2&=3, and all other
effective couplings are irrelevant, both at this and at the
Gaussian fixed point, so that all interaction terms in (6)
except for ��1� and �v may be dropped. It follows that
our system is described for intermediate length and time
scales by the DP critical point and its associated power
laws [15]. To order O�&�, they are ��?; �k; !� �
�12 �

&
16 ; 1�

&
12 ; 1�

&
6�.

(iii) For d � 2, one cannot access the system’s behavior
by way of a perturbation expansion around d � 4 because
newly relevant terms in the action introduce divergences
to all orders in perturbation theory. Therefore, we do not
expect DP behavior.

Physically, RG identifies the relevant microscopic inter-
actions in d � 3 and shows that the action (6) resembles
that of DP in the case where the coupling constant for
particle self-destruction vanishes. This is why the critical
point is at T � 0, so that finite T dynamics takes place in
the active phase of DP [15]. Moreover, simulations of the
3d FA model also confirm the DP picture [19]. For ex-
ample, for the correlation time scale we expect �D)� �
�c)� � c��k , so that t� c�� with � � 1� �k � 2�
&=12. The numerics indeed shows that � � 2:10 [19],
rather than the naive estimate � � 1� 2=d � 1:66 [7].

Our analysis implies that the slowdown is a dynamical
critical slowing down as the critical point is approached
from above. Correlation time and length scales grow as
inverse powers of c. Thermal activation results from c�
e�1=T . Dynamical scaling is predicted to occur when the
dynamic correlation length becomes appreciably larger
than the lattice spacing. This happens therefore for tem-
peratures lower than To, the onset temperature for dy-
namic heterogeneity [4,20].

Our analytical results apply to systems with isotropic
facilitation. We therefore expect them to apply to strong
liquids, and to those which exhibit a crossover from
fragile to strong behavior [3]. While we do not expect
DP behavior for the case of anisotropic constraints or
conserved order parameters [19], we do expect a zero-
temperature critical point to be the generic feature of
both strong and fragile glass formers [19,21]. We expect
that the scaling properties of liquids in their fragile
regime can be described by the field theory for a facili-
tated model with directional persistence, such as the East
model [19].

The field theory suggests the following physical pic-
ture. The viscosity of a supercooled liquid increases rap-
idly as T is lowered, because the dynamics becomes
increasingly spatially correlated. A glass is obtained
when the liquid’s relaxation time exceeds the experimen-
tal time scale. The scaling properties of time and length
scales and therefore the physical properties of super-
cooled liquids are governed by a zero-temperature dy-
namic critical point.

As shown in [3,4], this picture accounts quantitatively
for several observations concerning thermodynamic, dy-
namic, topographic, and spatial properties of supercooled
185705-3
liquids. However, the existence of critical fluctuations and
dynamic scaling remains to be proven [22,23]. We now
present numerical evidence to this end.

We have performed molecular dynamics simulations of
a well-characterized model for supercooled liquids, the
canonical 80:20 binary Lennard-Jones mixture defined in
Ref. [24]; further numerical details are found in [23].
According to the above analysis, power law spatial corre-
lations develop in the dynamics of a supercooled liquid
when T is lowered. With this in mind, we have measured
Sk�q; T�, defined as the spatial Fourier transform of the
following two-point, two-time correlation function,

Ck�r� �
hFk�0; )�Fk�r; )�i � hFk�r; )�i2

hFk�r; )�2i � hFk�r; )�i2
; (7)

where Fk�r; t� �
P
j�
rj�0� � r� cosfk � 
rj�t� � rj�0��g is

a natural local indicator of the dynamics of the liquid. In
these expressions, rj�t� is the position of particle j at time
t, and ) � )�k; T� is defined in a standard way from the
time decay of hFk�r; t�i. Similar functions replacing
density correlations by particle overlap or velocity corre-
lations have been discussed [9,10,22]. As predicted theo-
retically, we find that the q dependence of Sk is well
described by the following scaling form:

Sk�q; T� ’ ‘
2�/
k S�q‘k�; (8)

for all k, although a precise determination of / has
proven impossible because it is small, as found in the
RG approach. We are aware of no alternative theoretical
prediction for the correlator (7). The scaling function
S�x� behaves as S�x! 0� � const, S�x! 1� � x/�2.
Moreover, it is universal in the sense that it appears to
be independent of k for a range of inverse wave vectors
from the interparticle distance up to the size of the
simulation box. From (8), we conclude that universal
power law correlations develop in supercooled liquids.
Imposing / � 0, we can use Eq. (8) to numerically ex-
tract the length scale ‘k�T�, which grows when T de-
creases, as in [22].

The above RG analysis predicts scaling laws for length
and time scales expressed as a function of c, the concen-
tration of mobile regions. This quantity is difficult to
measure in simulations. However, one can eliminate c
in favor of ‘� )1=z, which defines a dynamic exponent
z � �=�?. Similarly, it is convenient to measure 2k�T� 	
Sk�q � 0; T�, which is predicted to scale as 2� )1=�,
��1 � �2� /��?=�. These two scaling predictions are
tested in Fig. 2. We find that the power law scalings
anticipated theoretically are well satisfied. We find also
that the exponents z and � that we measure from Fig. 2 do
not depend on the chosen physical observable. We note
that the numerical values of the exponents are in reason-
able agreement with the RG predictions, despite the fact
that the simulated liquid is thought to be fragile. A more
precise comparison between theory and simulation would
require a better finite size scaling analysis [25]. Note
185705-3



FIG. 2. Dynamic scaling of the susceptibility (top) and the
correlation length (bottom) measured for various wave vectors
in the binary Lennard-Jones mixture; ��r�2 indicates the k! 0
limit. For each k, we independently measure 2k, ‘k, and )k for
T 2 
0:45; 2:0�. The parameters 20 and ‘0 are determined as
the numerical prefactors in power law fits, so that the universal
dynamic scaling observed in these plots is obtained without
free parameters. Error bars reflect observable to observable
fluctuations of the exponents, and do not take into account
systematic errors. The few points outside the power law in the
bottom figure are all for T � 2:0, much above the onset of slow
dynamics, To ’ 1:0.

P H Y S I C A L R E V I E W L E T T E R S week ending
7 MAY 2004VOLUME 92, NUMBER 18
finally that [14] indirectly predicts a similar scaling
between 2 and ) although neither the value of the ex-
ponent nor its relation to spatial structures were derived.

In conclusion, this paper presents further [3,4] theo-
retical evidence that the slow dynamics in supercooled
liquids is governed by a zero-temperature dynamic criti-
cal point at which time and length scales diverge. We
propose that this critical point is responsible for the
existence of the glass state.
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