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Total energies for the six known polymorphs of plutonium metal have been calculated within spin
and orbital polarized density-functional theory as a function of lattice constant. Theoretical equilib-
rium volumes and bulk moduli correspond well with experimental data and the calculated total energies
are consistent with the known phase diagram of Pu. It is shown that a preference for the formation of
magnetic moments, increasing through the � ! � ! � phases, explains their position in the ambient
pressure phase diagram and their anomalous variation of atomic density. A simple model is presented
that establishes a relationship between atomic density, crystal symmetry, and magnetic moments which
is universally valid for all Pu phases.
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seems to be able to treat both �-Pu and �-Pu on the same
footing [10]. This latter approach, which allows for spin FIG. 1. The experimental[2] phase diagram of plutonium.
Since its discovery more than half a century ago,
plutonium has been a puzzling material with many
anomalous properties not well understood. No doubt,
this is the most complex metal in the periodic table
with as many as six established phases [1,2] stabilized
by moderate heating under room pressure conditions; see
Fig. 1. The � and � phases are highly complex structures
(monoclinic and orthorhombic), � (orthorhombic) is in-
termediate, whereas � (fcc), �0 (bct), and � (bcc) are
simple one atom=cell structures. Furthermore, there are
significant volume expansions associated with these
phase transitions. It seems plausible that this anomalous
behavior is connected to the 5f electrons which have been
shown to play a dominant role for the crystal structures
and atomic densities in the light actinides [3]. It is un-
clear, however, what detailed mechanism is governed by
the electronic structure. Quantifying this mechanism is
central to the understanding of Pu and perhaps the whole
actinide series of metals, because Pu plays a key role
being on the border between delocalized (Th-Np) and
localized (Am and on) 5f-electron behavior. Further-
more, if the process responsible for the structural phase
transitions in Pu can be clarified, other anomalous prop-
erties of Pu, such as resistivity, superconductivity, thermal
expansion, and magnetic susceptibility may be better
understood.

The ground-state � phase has been shown to be rather
well described by first-principles calculations that prop-
erly handle the complexity of this structure [4]. Narrow
5f bands in Pu, positioned in the vicinity of the Fermi
level, favor low symmetry structures over those with
higher symmetry due to a Peierls-like symmetry break-
ing mechanism (’’Peierls distortion’’) [4,5]. This inves-
tigation [4] and many others were not able to explain the
occurrence of a high symmetry (fcc) � phase of pluto-
nium, however. Consequently, several theoretical models
suitable for �-Pu have been developed [6–11], but only one
0031-9007=04=92(18)=185702(4)$22.50 
and orbital polarization, is therefore natural to apply for
the remaining Pu phases.

In the present investigation we calculate the electronic
structure and total energy of the six known ambient
pressure phases of Pu using an all electron full-potential
linear muffin-tin orbitals (FPLMTO) method [12] that
include spin-orbit coupling and orbital polarization ef-
fects. The parameters for these calculations were similar
to those given earlier [10,11], but the more important
details are repeated here. The method is an implementa-
tion of density-functional theory (DFT) as applied for
a bulk material [12]. The approximations in this approach
are limited to the standard ones of the exchange-
correlation energy functional, cutoffs in the expansion
2004 The American Physical Society 185702-1
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FIG. 2. Calculated total energies for the six known polymorfs
of plutonium as a function of atomic volume. Note that the y
axis is broken to better display the �-Pu energies.

TABLE I. Experimental data from the Pu handbook [1]
unless otherwise stated. Volumes (V) in �A3, bulk moduli (B)
in GPa, and energies (E) in mRy=atom. All total energies are
relative to the total-energy minimum of �-Pu.

FPLMTO Experiment
Phase V B E V B

� 20.3 50 0 20.2 40–66
� 23.1 59 1.1 22.7 � � �

� 24.3 33 1.1 23.5 � � �

� 24.9 41 1.5 25.2 30–35a

�0 24.7 44 1.8 25.1 � � �

� 24.6 23 8.1 24.4 � � �

aMoment [19].
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FIG. 3. Calculated average magnitude of spin moments per
atom for �-Pu, �-Pu, and �-Pu.
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of basis functions, of k-point sampling in integrations
over the Brillouin zone, and of the Born-Oppenheimer
assumption. For the exchange-correlation approximation
we used the generalized gradient approximation [13].
Spin-orbit coupling and spin/orbital polarization were
accounted for, in the same way as have been described
earlier [10].

The use of full nonsphericity of the charge density and
one-electron potential is essential for accurate total en-
ergies. This is accomplished in our method by expanding
charge density and potential in cubic harmonics inside
nonoverlapping muffin-tin spheres and in a Fourier series
in the interstitial region. The calculations included so-
called semicore 6s and 6p states in addition to the valence
states (7s, 7p, 6d, and 5f).

The geometry of the structures was kept fixed to the
experimental geometry [1]. This is a good approximation
because relaxation effects are very small in Pu [14].
Sampling of the irreducible Brillouin zone was done
using the special k-point method [15], and the number
of k points used were 64 for the eight atom=cell calcu-
lations (�; �; �0; �), 4 for �-Pu (17 atoms=cell), and 16 for
�-Pu (16 atoms=cell). �-Pu, �-Pu, and �-Pu were all
calculated for antiferromagnetic (AF) optimized configu-
rations (see below), whereas for the other three structures
a disordered magnetic configuration was assumed. The
latter is motivated by the belief that �-Pu and higher
temperature phases are stabilized by disorder [11,16].
The magnetic disorder was accomplished using an eight
atom special quasirandom structure [17] as described
previously [11].

Our main results are shown in Fig. 2, where total
energies for all phases are plotted as a function of atomic
volume. Notice first that they are, except for �-Pu, very
close and with the true ground-state � phase being the
most stable, followed by �-Pu, �-Pu, �-Pu, �0-Pu, and
finally �-Pu. The total energies for � and � plutonium are,
however, within numerical accuracy and indistinguish-
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able (Table I). Our theory is thus fully compatible with
the known phase diagram of Pu shown in Fig. 1.
Furthermore, the calculated atomic volume for each
phase is in very good agreement with the experimental
value, see Table I, and again the numerical order is correct
with �-Pu being the most and �-Pu being the least dense
phase. This is remarkable because the densities vary
greatly, �-Pu is 25% denser than �-Pu and the four
remaining phases lie between. With an 11% larger atomic
volume than �-Pu, �-Pu becomes stable at 390 K [1]. This
expansion is very well reproduced in our calculations as
is the next expansion of about 5% that occurs for �-Pu.
Even the subtle differences in atomic volume between
�-Pu, �0-Pu, and �-Pu are reproduced by our theory.

The bonding properties of Pu clearly change strongly
with temperature heralding the great volume expansions
that accompany the phase transitions. From our calcula-
tions we can infer that these expansions are related to the
spontaneous formation of magnetic moments that corre-
late with the crystal geometry and atomic density (see
below). For �-Pu the spin moments have relatively small
magnitudes, see Fig. 3, and calculations ignoring spin
185702-2



FIG. 4. Calculated normalized spin moment for atoms in �,
�, �, and � plutonium, as a function of the geometry parameter
G (see main text).
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polarization are therefore adequate to describe this phase
rather well [4,14,18]. With only a small magnetic polar-
ization, �-Pu condenses in a low symmetry state and at a
very high density. The situation for �-Pu is already
significantly different, with substantial spin moments
predicted by our calculations; see Fig. 3. There is a dis-
continuity in the average spin (and orbital, not shown)
moment between � and � plutonium, which is likely
related to the abrupt change in both their atomic volumes
and crystal structure. Also, for the next (� ! �) transi-
tion, the same behavior is predicted by our calculations,
although the increase in magnetic moment is less, as is the
volume expansion accompanying this phase transition.

Although elaborate and time consuming electronic-
structure calculations can give us accurate total energies
of plutonium phases, it is desirable to find an interpreta-
tion which offers to provide a fundamental understanding.
Our calculations reveal that the spin moments and their
configurations vary strongly between the different Pu
phases. In addition, the total energy of a particular phase
is very sensitive to the actual spin configuration. Also,
larger magnetic moments seem to induce expanded equi-
librium volumes. Clearly, it emerges a connection be-
tween the atomic density, crystal symmetry, and the
behavior of the magnetic moments in Pu, which so far
has not been recognized.

To bring this connection to light, we have conducted a
comprehensive study of the local geometries of the Pu
structures studied above by decomposing their unit cells
into Voronoi cells. We can rigorously define the average
bond length for atom i at Ri as

b�Ri� �
1

2

X
j�i

w�Ri;Rj�jRi �Rjj; (1)

where the sum runs over all the neighboring atoms j that
contribute a surface patch to the Voronoi cell of this atom
i. The weight factors, w�Ri;Rj�, are determined by the
relative contribution of atom j to the total Voronoi-cell
surface around atom i, and it can be expressed as

w�Ri;Rj� �
��Ri;Rj�P
k
��Ri;Rk�

: (2)

Here ��Ri;Rj� is the area of the Voronoi-cell face be-
tween atoms i and j. We can further study the shape of the
Voronoi cells by computing the variance, s, of the nearest
neighbor bond lengths:

s�Ri� �

�����������������������������������������������������������������������������
1

4

X
j

w�Ri;Rj��Ri �Rj�
2 � 	b�Ri�


2

vuut : (3)

We have now defined two parameters for the local ge-
ometry: (i) b quantifies the volume associated with atom i,
and (ii) s represents the amount of local symmetry around
each atom. A highly symmetric structure, such as fcc, has
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zero variance (s � 0) in the distribution of its nearest
neighbor bond lengths, while nonisotropic distortions
increase this quantity (s > 0).

Next, we attempt to establish a link between the atomic
density (b), crystal symmetry (s), and magnetic moments
that may emerge as universally valid for all the phases of
plutonium. In general, ordered magnetism in a metal is
expected when the exchange energy dominates over the
band energy. This is often the case when there is a high
density of states at the Fermi level (EF) that reduce the
band energy required to align the spins. In Pu there are
very narrow 5f states which provide this situation, and a
spontaneous breaking of the crystal and/or spin symme-
tries is expected. It then appears likely that the competi-
tion between these two effects, Peierls distortion and spin
polarization, can give rise to conditions in Pu which
favors one effect over the other. As one extreme, one
expects a nonmagnetic high-density phase with very
low crystal symmetry, and as another, a magnetic low-
density phase with high crystal symmetry. The magnetic
phase should crystallize at a lower density because mag-
netically polarized and nearly filled 5f subbands provide
little attractive bonding. To better quantify these ideas for
Pu, we construct a local geometry parameter G that
depends on b and s and has the units of b:

G � b
�
1� 2

�
s
b

	
2


: (4)

G can be computed straightforwardly for any Pu atom
from its local geometry. In Fig. 4, we plot first-principles
atom-projected spin moments, normalized with their re-
spective total charge, for �, �, �, and � Pu atoms versus
their corresponding geometry parameter G. Notice that
the spin moments for all the atoms, independent of their
phase origin, fall on the same universal curve. Hence, we
have discovered that the calculated spin moment (and
orbital moment, not shown) varies continuously as a
function of the local geometry in Pu. This is a most
185702-3
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important insight as it shows that no fundamental
changes or discontinuities of the electronic structure
need to be invoked to produce the many phases of Pu,
once the presence of magnetic moments is acknowledged
and incorporated into the theory.

In our first-principles treatment of Pu, the magnitudes
of the magnetic moments are self-consistently calculated,
whereas the actual spin configuration is an input to the
calculation. Therefore, it is most desirable to have some
guidance as to what spin configuration is the ground state.
It has been found [11,14] that an AF ordering often seems
favored in Pu. Unfortunately, there are many possibilities
to order the spins in antiparallel ways, especially for the
more complex structures. Following our past experience
[11,14], we know that it is energetically favorable to order
the moments such that the AF coupling between each
atom and all its nearest neighbors is maximized. The
strength of this local AF interaction can be defined as

A �Ri� � �M�Ri� �
X
j

w�Ri;Rj�M�Rj�; (5)

where M�Ri� is the magnetic moment on atom i and
w�Ri;Rj� the weight factors defined in Eq. (2). We
now propose that the maximum of the average local AF
coupling,

hAi �

PNatoms
i�1 A�Ri�PNatoms

i�1 M�Ri� �M�Ri�
; (6)

characterizes the ground states in Pu. For instance, hAi
is maximum in bcc for the standard AF ordering, and in
fcc when aligning the moments within (001) planes op-
posite to the spins of the adjacent layers (the so-called
L10 structure). On the other hand, for �-Pu the particular
AF configuration [14,18] has little effect upon the total
energy, since the magnetic contribution is small and
mainly driven by a magnetic moment on site 8 [14]. For
�-Pu, however, there are many sites with similar magni-
tudes of the magnetic moments, and therefore, many
plausible magnetic configurations. In this case, analyzing
hAi is helpful when searching for the ground-state con-
figuration, and from our ab initio calculations of several
magnetic configurations we found that the largest hAi
does indeed correspond to the lowest total energy.

Obviously, DFT is capable of producing realistic ener-
getics and cohesion for the many, and very different,
phases of plutonium when magnetic interactions are ac-
counted for. This fact strongly suggests that magnetism
plays a role in Pu although screening or other effects may
obscure its existence experimentally. We show that by
defining two parameters of the crystal structure, b (den-
sity) and s (symmetry), the magnetic moments correlate
in a universal relationship with all six phases of Pu.
Hence, the Pu phases (with the exception of �-Pu) are
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equally well described within a single framework estab-
lished by DFT, and that the strength of the magnetic
interactions distinguishes the various phases. From a
practical point of view, we have demonstrated that reli-
able total energies of Pu can be calculated and now be
utilized for computing equation-of-state, phase stability,
mechanical properties, and developing efficient inter-
atomic potentials for plutonium.
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