
P H Y S I C A L R E V I E W L E T T E R S week ending
7 MAY 2004VOLUME 92, NUMBER 18
Confinement versus Chiral Symmetry
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We construct an effective Lagrangian which illustrates why color deconfines when chiral symmetry
is restored in hot gauge theories with quarks in the fundamental representation. For quarks in the adjoint
representation we show that, while deconfinement and the chiral transition do not need to coincide,
entanglement between them is still present. Extension to the chemical potential driven transition is
discussed.
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reasons are still unknown. 2 3 4
In the absence of quarks, the SU�N�Yang-Mills theory
has a global ZN symmetry [1]. There exists a gauge
invariant operator charged under ZN , the Polyakov loop,
which can be identified as the order parameter of the
theory, and thus be used to characterize the deconfine-
ment phase transition [2]. One can directly study this
phase transition via numerical lattice simulations. Such
studies have revealed that the deconfinement phase tran-
sition is second order when the number of colors is Nc � 2
[3], weakly though [4], but first order for Nc � 3 [5], and
presumably first order for Nc � 4 [6].

The picture changes considerably when quarks are
added to the theory. If fermions are in the fundamental
and pseudoreal representations for Nc � 3 and Nc � 2,
respectively, the corresponding Z3 or Z2 center of the
group is never a good symmetry. The order parameter is
the chiral condensate which characterizes the chiral
phase transition. For Nc � 3 and two massless quark
flavors at finite temperature and zero baryon density, the
chiral phase transition is in the same universality class as
the three-dimensional O�4� spin model [7], becoming a
smooth crossover as small quark masses are accounted for
[8]. For Nc � 2, the relevant universality class is that of
O�6� both for the fundamental and adjoint representations
[9]. Even if the discrete symmetry is broken, one can still
construct the Polyakov loop and study the temperature
dependence of its properties on the lattice. One still ob-
serves a rise of the Polyakov loop from low to high
temperatures and naturally, although improperly, one
speaks of deconfining phase transition [10]. For fermions
in the adjoint representation, the center of the group
remains a symmetry of the theory, and thus, besides the
chiral condensate, also the Polyakov loop is an order
parameter.

Interestingly, lattice results [10] indicate that for ordi-
nary QCD with quarks in the fundamental representation,
chiral symmetry breaking and confinement (i.e., a de-
crease of the Polyakov loop) occur at the same critical
temperature. Lattice simulations also indicate that these
two transitions do not happen simultaneously when the
quarks are in the adjoint representation. Despite the at-
tempts to explain these behaviors [11], the underlying
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In this Letter, we propose a solution to this puzzle
based on the approach presented in [12,13], envisioned
first in [14], concerning the transfer of critical properties
from true order parameters to noncritical fields. The order
parameter field is a field whose expectation value is a true
order parameter, i.e., is zero in the symmetric phase and
nonzero in the spontaneously broken one. The nonorder
parameter (or noncritical) fields are the ones whose ex-
pectation values do not have such a behavior.

Two general features introduced in [12,13] are essen-
tial: There exists a relevant trilinear interaction between
the light order parameter and the heavy nonorder parame-
ter field, singlet under the symmetries of the order pa-
rameter field. This allows for an efficient transfer of
information from the order parameter to the fields that
are singlets with respect to the symmetry of the theory.
As a result, the noncritical fields have infrared dominated
spatial correlators. The second feature, also due to the
existence of such an interaction, is that the finite expec-
tation value of the order parameter field in the symmetry
broken phase induces a variation in the expectation value
for the singlet field, whose value generally is nonvanish-
ing in the unbroken phase.

Fundamental representation.—Here we study the be-
havior of the Polyakov loop by treating it as a heavy field
that is a singlet under chiral symmetry transformations.
We take the underlying theory to be two colors and two
flavors in the fundamental representation. The degrees of
freedom in the chiral sector of the effective theory are
2N2

f � Nf � 1 Goldstone fields �a and a scalar field �.
For Nf � 2, the potential is [15,16]
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with 2M � �	 i 2
���
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�a Xa, a � 1; . . . ; 5, and Xa 2
A�SU�4���A�Sp�4��. Xa are the generators provided
explicitly in Eqs. (A.5) and (A.6) of [16]. The Polyakov
loop potential in the absence of the Z2 symmetry is

V���� � g0�	
m2

� �2 	
g3 �3 	

g4 �4: (2)
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FIG. 1 (color online). Left panel: Behavior of the expectation
values of the Polyakov loop and chiral condensate close to the
chiral phase transition as a function of the temperature, with
quarks in the fundamental representation. Right panel: Same as
in left panel, for quarks in the adjoint representation and Tc� �
Tc� (see discussion in the text).
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The field � represents the Polyakov loop itself, while m�
is the mass above the chiral phase transition. To complete
the effective theory, we introduce interaction terms al-
lowed by the chiral symmetry

Vint��;�;�a� � �g1�	 g2�2�Tr�MyM�

� �g1�	 g2�
2���2 	 �a�a� : (3)

In the phase with T < Tc�, where chiral symmetry is
spontaneously broken, � acquires a nonzero expectation
value, which in turn induces a modification also for h�i.
The usual choice for vacuum alignment is in the � direc-
tion, i.e., h�i � 0. The extremum of the linearized po-
tential is at

h�i2 ’ �
m2

�

�
; m2

� ’ m2 	 2g1h�i; (4)

h�i ’ �0 �
g1
m2

�
h�i2; �0 ’ �

g0
m2

�
; (5)

where � � �1 	 �2. Here m2
� is the full coefficient of the

�2 term in the tree-level Lagrangian which, due to the
coupling between � and �, also depends on h�i.
Spontaneous chiral symmetry breaking appears for m2

� <
0. In this regime, the positive mass squared of the � is
M2

� � 2�h�2i. The formulas (4) and (5) hold near the
phase transition where h�i is small. We have ordered the
couplings such that g0=m

3
� and g1=m� are both much

greater than g2 and g3=m�. This previous ordering does
not affect our general conclusions. No such ordering will
be considered for quarks in the adjoint representation of
the gauge group. When computing the expectation values
for the relevant fields, we will keep the full potential.

Near the critical temperature, the mass of the order
parameter field is assumed to possess the generic behavior
m2

� � �T � Tc�
�. Equation (5) shows that for g1 > 0 and

g0 < 0 the expectation value of � behaves oppositely to
that of �: As the chiral condensate starts to decrease
towards chiral symmetry restoration, the expectation
value of the Polyakov loop starts to increase, signaling
the onset of deconfinement. This is illustrated in the left
panel of Fig. 1. Positivity of the expectation values im-
plies 2g21 � �m2

� < 0, which also makes the extremum a
minimum. At the one-loop level, one can show [13] that
also �0 acquires a temperature dependence.

When applying the analysis presented in [12,13], the
general behavior of the spatial two-point correlator of the
Polyakov loop can be obtained. Near the transition point,
in the broken phase, the � two-point function is domi-
nated by the infrared divergent � loop. This is so, because
the �a Goldstone fields couple only derivatively to �, and
thus decouple. We find a drop in the screening mass of the
Polyakov loop at the phase transition. When approaching
the transition from the unbroken phase, the Goldstone
fields do not decouple, but follow the �, resulting again in
the drop of the screening mass of the Polyakov loop close
to the phase transition. We consider the variation
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�m2
��T� � m2

��T� �m2
� of the � mass near the phase

transition with respect to the tree-level mass m�. The
one-loop analysis predicts

�m2
��T� � �

g21
jm�j

� t���=2�; (6)

with t � jT=Tc � 1j. This result shows the strong infra-
red sensitivity of the two-point correlator of the field � at
the onset of chiral symmetry restoration. The detailed
behavior of the screening mass of the Polyakov loop near
the phase transition depends on the resummation proce-
dure used to deal with the infrared divergences.

The large N framework motivated resummation [13]
leads to

�m2
��T� � �

2g21�1	 N��

8�m� 	 �1	 N��3�
; T > Tc�; (7)

�m2
��T� � �

2g21
8�M� 	 3�

; T < Tc�: (8)

This provides a qualitative improvement, since one ex-
pects that the mass of the nonorder parameter field re-
mains finite at the phase transition. From the above
equations, one finds that the screening mass of the
Polyakov loop is continuous and finite at Tc�, and
�m2

��Tc�� � �2g21=�3��, independent of N�, the number
of pions. Even if the mass is not critical, some associated
quantities do display critical behavior. We define the slope
parameters for the singlet field as

D�
� � lim

T!T�
c�

1

�m2
��Tc��

d�m2
��T�

dT
: (9)

These have the critical behavior D�
� � t�=2�1. However,

as shown in [13], different critical exponents might
emerge when one departs from the large N limit.

This analysis is not restricted to the chiral/deconfining
phase transition. The entanglement between the order
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parameter (the chiral condensate) and the nonorder pa-
rameter field (the Polyakov loop) is universal.

Adjoint representation.—As a second application, con-
sider two color QCD with two massless Dirac quark
flavors in the adjoint representation. Here the global sym-
metry is SU�2Nf� which breaks via a bilinear quark
condensate to O�2Nf�. The number of Goldstone bosons
is 2N2

f 	 Nf � 1. We take Nf � 2. There are two exact
order parameter fields: the chiral � field and the Polyakov
loop �. Since the relevant interaction term g1��

2 is now
forbidden, one might expect no efficient information
transfer between them. This naive statement is partially
supported by lattice data [10]. While respecting general
expectations, the following analysis suggests the presence
of a new and more elaborated structure which lattice data
can clarify in the near future.

The chiral part of the potential is given by (1)
with 2M � �	 i2

���

2
p

�aXa, a � 1; . . . ; 9 and Xa 2
A�SU�4���A�O�4��. Xa are the generators provided
explicitly in Eqs. (A.3) and (A.5) of [16]. While the chiral
part of the potential takes the same form as for the
fundamental representation, there are differences when
expressing the potential in terms of the component fields.
These do not affect the following analysis. The Z2 sym-
metric potential for the Polyakov loop is

V���� �
m2

0�

2
�2 	

g4
4
�4; (10)

and the only interaction term allowed by symmetries is

Vint��;�;�� � g2�2 Tr�MyM� � g2�2��2 	 �a�a�:

(11)

The effective Lagrangian has no knowledge of which
transition, the chiral or confinement, happens first.
Although lattice data already provides such informa-
tion, we find it instructive to analyze separately all the
possibilities.

When chiral symmetry is restored before deconfine-
ment Tc� � Tc�, we consider three regimes: For T < Tc�,
the Z2 symmetry is intact, while the chiral symmetry is
broken. Here h�i2 � �m2=�. For T > Tc�, the Z2 is bro-
ken, h�i2 � �m2

0�=g4, and chiral symmetry is restored.
In both cases, the coefficient of the relevant quadratic
term yielding condensation is not influenced by the ex-
pectation values of the other field since the latter vanishes.
In the intermediate regime between the two critical tem-
peratures both symmetries are unbroken and h�i � h�i �
0. In this intermediate regime no trilinear interaction
term between the fields is induced. For T < Tc�, the
interaction h�i��2, and for T > Tc� a term h�i��2 in
the Lagrangian exists. These interactions are innocuous
for two reasons: (i) They vanish close to their respective
phase transition, and (ii) they cannot induce any infrared
divergent loops [12]. Thus, for Tc� � Tc� the two tran-
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sitions are fully separated, and neither of the two fields
feels, even weakly, the transition of the other.

The situation drastically changes when Tc� � Tc�. For
Tc� < T < Tc� both symmetries are broken, and the ex-
pectation values of the two order parameter fields are
linked to each other:

h�i2 � �
1

�
�m2 	 2g2h�i2� � �

m2
�

�
;

h�i2 � �
1

g4
�m2

0� 	 2g2h�i2� � �
m2

�

g4
:

(12)

The coupling g2 is taken to be positive. One can show that
positivity of the square of the expectation values implies
�g4 � 4g22 > 0. The latter is sufficient to make the ex-
tremum of the potential a minimum. The expected be-
havior of m2

� � �T � Tc��
�� and m2

� � �T � Tc��
�� near

Tc� and Tc�, respectively, combined with the result of
Eq. (12), yields in the neighborhood of these two tran-
sitions the qualitative situation, illustrated in the right
panel of Fig. 1. On both sides of Tc� the relevant inter-
action term g2h�i��2 emerges, leading to a one-loop
contribution to the static two-point function of the � field
/h�i2=m�. Near the deconfinement transition m� ! 0,
yielding an infrared sensitive screening mass for �.
Similarly, on both sides of Tc� the interaction term
h�i��2 is generated, leading to the infrared sensitive
contribution /h�i2=m� to the � two-point function. We
conclude that, when Tc� � Tc�, the two order parameter
fields, a priori unrelated, do feel each other near the
respective phase transitions. It is important to emphasize
that the effective theory works only in the vicinity of the
two phase transitions. Interpolation through the inter-
mediate temperature range is shown by dotted lines in
the right panel of Fig. 1. Possible structures here must be
determined via first principle lattice calculations.

The infrared sensitivity leads to a drop in the screening
masses of each field in the neighborhood of the transition
of the other, which becomes critical, namely, of the �
field close to Tc�, and of the � field close to Tc�. These
drops at the transition points are expected, at the one-
loop level, to behave as

�m2
��T� � �

�g2h�i�2

jm�j
� t����=2�; (13)

and, similarly, we have �m2
��T� � t���=2 near the Z2

phase transition. In the derivation of the above results,
we considered the expectation values of the fields in the
broken phases to be close to their asymptotic values. The
resummation procedure outlined in the previous section
predicts again a finite drop:

�m2
��Tc�� � �

8g22h�i
2

3�
; �m2

��Tc�� � �
8g22h�i

2

3g4
:

(14)
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We thus predict the existence of substructures near these
transitions, when considering fermions in the adjoint
representation. Searching for such hidden behaviors in
lattice simulations would help to further understand the
nature of phase transitions in QCD.

Discussion.—Via an effective Lagrangian approach, we
have seen how deconfinement (i.e., a rise in the Polyakov
loop) is a consequence of chiral symmetry restoration in
the presence of fermions in the fundamental presentation.
In nature, quarks have small but nonzero masses, which
makes chiral symmetry only approximate. Nevertheless,
the picture presented in this Letter still holds: Confine-
ment is driven by the dynamics of the chiral transition.
The argument can be extended even further: If quark
masses were very large then chiral symmetry would be
badly broken, and could not be used to characterize the
phase transition. However, in such a case the Z2 symme-
try becomes more exact, and by reversing the roles of the
protagonists in the previous discussion, we would find that
the Z2 breaking drives the (approximate) restoration of
chiral symmetry. Which of the underlying symmetries
demands and which amends can be determined directly
from the critical behavior of the spatial correlators of
hadrons or of the Polyakov loop [12,13].

With quarks in the adjoint representation we investi-
gated two scenarios. In a world in which chiral symmetry
is restored first, and then at some higher temperature
deconfinement sets in, Tc� � Tc�, the two phase transi-
tions happen completely independent of each other. We
know from [10], however, that Tc� � Tc�. In this case, we
have pointed to the existence of an interesting structure,
which was hidden until now: There are still two distinct
phase transitions, but since the fields are now entangled,
the transitions are not independent. This entanglement is
shown at the level of expectation values and spatial cor-
relators of the fields. More specifically, the spatial corre-
lator of the field which is not at its critical temperature
will in any case feel the phase transition measured by the
other field. Lattice simulations will play an important
role in checking these predictions.

The analysis can be extended for phase transitions
driven by a chemical potential. In fact, for two color
QCD this is straightforward to show. When considering
fermions in the pseudoreal representation, there is a phase
transition from a quark-antiquark condensate to a diquark
condensate [17]. We, hence, predict that, in two color
QCD, when diquarks form for � � m�, the Polyakov
loop also feels the presence of the phase transition exactly
in the same manner as it feels when considering the
temperature driven phase transition. Such a situation is
supported by recent lattice simulations [18]. The results
presented here are not limited to describing the chiral/
deconfining phase transition and can readily be used to
understand phase transitions sharing similar features.
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Even if the effective Lagrangian approach à la
Ginzburg-Landau is an oversimplification, it allows, on
one hand, to illuminate the relevant physics involved and,
on the other hand, permits a systematic study of different
effects, such as a nonzero chemical potential, quark
masses, quark flavors, and axial anomaly.
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