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Skewness as a Test of the Equivalence Principle
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The skewness of the large-scale distribution of matter has long been known to be a probe of
gravitational clustering. Here we show that the skewness is also a probe of violation of the equivalence
principle between dark matter and baryons. The predicted level of violation can be tested with the
forthcoming data from the Sloan Digital Sky Survey.
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field couples to matter and drives the accelerated expan-
sion [15,16].

this term in all generality as 	 2�m��a; r�ri�, where
��a; r� is a function that in general will depend on time
The normalized third order moment of the galaxy
distribution, or skewness, is defined as

S3 �
h��x�3i

�h��x�2i�2
; (1)

where ��x� is the density contrast at the point x. Its value
at large (weakly nonlinear) scales can be calculated
assuming that structure forms only via gravitational in-
stability: In a flat universe dominated by matter with
Gaussian initial conditions, the well-known result is [1]
S3 � 34=7. If the density contrast is smoothed through a
window function of size R, the skewness becomes [2,3]

ŜS 3 � S3 �
d log�2�R�
d logR

; (2)

where �2 is the variance of the density field smoothed
through the same window function. In a series of papers it
has been shown that S3 remains extremely close to 34=7 in
dark energy models [4,5], in curved spaces [6], in brane-
induced gravity [7], and in Brans-Dicke models [8], with
deviations that hardly exceed 1% in the observationally
acceptable range of cosmological parameters. These re-
sults have shown that S3 can be considered one of the best
probes of the gravitational instability picture at large
scales [9]. Only scenarios with radically different features
predict values of S3 that deviate sensitively from the
standard results: non-Gaussian initial conditions [10],
cosmic strings [11], Cardassian cosmologies [7,12], and
modified gravity models based on Birkhoff ’s law [13].

Since the skewness is such a good test of gravity, it
seems interesting to ask whether it is also a good test of
the universality of gravity, that is of the equivalence
principle. In this Letter, we focus on the class of viola-
tions of the equivalence principle in which the violating
force is mediated by a scalar field. In other words, we
investigate the effects on S3 of a scalar field coupled to
matter in a species-dependent way. These models, first
studied in [14], have been revived in the context of
coupled dark energy (CDE), in which the same scalar
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Let us recapitulate the calculation of the skewness as
detailed in [2] and recently reviewed in [9]. We start by
writing down the Newtonian equations for a pressureless
fluid with density 	, density contrast �, and dimension-
less peculiar velocity vi � vpec;i=H , where H � aH is
the conformal time Hubble function and a is the scale
factor. Defining the gravitational potential � and the
auxiliary variable � � �=�4�	a2�, the Newtonian equa-
tions are

�0 � ri�1� ��vi � 0; (3)

v0
i �

�
1�

H 0

H

�
vi � vjrjvi � 	

3

2
�mri�; (4)

and the Poisson equation is riri� � �, where ri deri-
vates with respect to comoving coordinates and the prime
denotes derivation with respect to � � loga. These equa-
tions have to be complemented by the Friedmann equa-
tion for H 0 and by the matter conservation equations.

We generalize now the equations introducing a scalar
coupling to dark matter. Such a coupling is realized in
any theory which admits in the Lagrangian a Brans-
Dicke term of the form f� ~��; ~RR�; the low-energy limit of
superstring theory is the most interesting example [17].
Upon a conformal transformation, this theory can be
written as Einsteinian gravity in which matter (subscript
c) and scalar field (�) interact through an exchange term
in their conservation equations (see, e.g., [15,18,19]):

T�
�c��;� �	

��������
2=3

p
�2����T�c��;�;

T�
����;� �

��������
2=3

p
�2����T�c��;�;

(5)

where �2 � 8�G and the dimensionless coupling ����
depends on the function f� ~��; ~RR�. The coupling introduces
two distinct effects on the Newtonian equations: First,
due to the interaction an additional force appears as a
source; second, the matter energy density is no longer
conserved. The first effect implies that matter feels an
extra force due to its interaction with the scalar field that
will add to the right-hand side in Eq. (4). We can write
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and distance. For a potential V��� the field effective mass
is m2 � d2V=d�2 and the interaction scale is � � 1=m.
Then the new force introduces a Yukawa correction in the
gravitational potential which becomes ��r�=r, where
��r� � 1� �4=3��2e	r=�. Here, however, we will assume
for simplicity that � is infinite, or at least much larger
than the observed scales: On one hand, a very small �
would be unobservable, since the interaction would be
effectively damped; on the other, if we interpret the scalar
field as dark energy then its interaction scale � is ex-
pected to be of the order of the Hubble size. It is possible,
however, to generalize the calculations to a finite �.

The second effect arises because of the nonconserva-
tion of the matter energy density. Equation (5) implies in
fact in a homogeneous and isotropic metric an equation of
the form

	0 � 3	 � 	
��������
2=3

p
�2�����0	; (6)

whose solution 	 � n0m0a	3e	
������
2=3

p
�2
R
���� d� can be in-

terpreted as a varying dark matter mass, 	 � n0a	3m���

with m��� � m0e
	

������
2=3

p
�2
R
���� d�, and n0 is the numeri-

cal density of particles at present. This time-dependent
mass introduces an extra friction term in the Euler equa-
tions. Therefore, the scalar-Newtonian Euler equation for
a coupled fluid can be written in the form

v 0
c �

1
2Fc���vc � �vc � ~rr�vc � 	3

2Sc���
~rr�c; (7)

where the two functions, the friction Fc��� and the source
Sc���, are in general time dependent. In [19], we have
shown that the full relativistic perturbation treatment of
CDE reduces to Eqs. (3) and (7) in the Newtonian limit,
with

Fc��� � 2

�
1�

H 0

H
	 2�

�0���
6

p

�
;

Sc��� ��c

�
1�

4

3
�2

�
;

where the � terms in Fc; Sc quantify the two effects due
to the scalar interaction. Let us stress again that the
function � is in general field dependent.

The upper bounds on a scalar interaction with baryons
(subscript b) are very strong, of the order of �b < 0:01
[20]: In the following, we assume that the interaction to
baryons is effectively zero but will generalize to �b � 0
at the end (in Ref. [21] it has been proposed a model in
which such constraints can be escaped but only for suit-
ably chosen potentials). The bounds on a coupling to dark
matter (subscript c) are, however, much weaker. In [22]
astrophysical observations were employed to derive �c <
1:5 roughly; N-body simulations [23] have shown that the
dark matter halo profile depends sensitively on �c in a
class of dark energy models but, due to the controversial
status of the observations, it is difficult to derive firm
upper limits. Finally, in [24], we found that cosmic mi-
crowave background (CMB) requires �c < 0:13; however,
this result assumes that the coupling remains constant
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throughout the universe lifetime and it is actually most
sensitive to the value of �c at early times. Moreover, the
limits obviously depend on the assumed priors on the
cosmological parameters, especially on the Hubble con-
stant. Therefore, there are no strong upper bounds to the
present value of a scalar field coupling to dark matter; if
�c varies with time, then even a value of order unity at
present is not definitively excluded. We assume therefore
the coupling to dark matter as a free parameter and drop
the subscript c in �c. Since the baryons are practically
uncoupled, the scalar interaction violates the equivalence
principle. The value of � is therefore also a measure of the
equivalence principle violation.

For an uncoupled and subdominant (i.e., �b � �c)
component such as the baryons, Eq. (7) becomes

v 0
b �

1
2Fb���vb � �vb � ~rr�vb � 	3

2Sb���
~rr�c; (8)

where Fb � 2� 2H 0=H , Sb � �c ��b  �c. In the
standard pure matter case H 0=H � 	1=2 and Fc;b �
Sc;b � 1, while in a flat universe with a scalar field com-
ponent with equation of state w� � p�=	�, one has
H 0=H � 	�1� 3w��1	�m��=2 (here and in the fol-
lowing �m � �c ��b).

Following the notation of Refs. [2,5], we expand the
scalar-Newtonian equations in a perturbation series, � �P

i�
�i�; and � �

P
i�

�i�. For each component we define the
growth function D1���, ��1� � D1����

�1�
0 , where ��1�

0 is
the density contrast at the initial time (assumed Gaussian
distributed) and the growth exponent m��� � D1

0=D1: At
first order, we derive therefore the equations

��1�00
b �

Fb

2
��1�0
b 	

3

2
Sb�

�1�
c � 0; (10)

��1�00
c �

Fc

2
��1�0
c 	

3

2
Sc�

�1�
c � 0: (11)

Asymptotically, the dark matter drives the evolution of
the baryons, so that the two components grow with the
same exponent m��� but with a biased amplitude, b �
��1�
b =��1�

c . Subtracting the two equations, we see that b �
Sb=�Sc �m�Fb 	 Fc�� [19]. In the limit of small �0,
which is a typical occurrence for a slowly rolling dark
energy field, Fc � Fb and the (anti)bias is simply

b � �1� 4�2=3�	1; (12)

constant in time and space. In the same limit, it appears
that both the background evolution and the perturbation
equations depend on �2 so that the sign of � is irrelevant.
It is remarkable that in the opposite limit in which the
field kinetic energy is much larger than the potential
energy (for instance, in the original Brans-Dicke model
in which V � 0) so that the field does not drive the
acceleration, it turns out that �0 / � [24] and the product
��0 in Fc is proportional to �2. Then even in this case the
sign of � does not matter. In the following, we put � > 0.

Here and below, we will assume for the numerical
integrations an inverse power law potential V ��	n.
181102-2
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FIG. 1 (color online). Contour plot of the observable quanti-
ties S3b � �7=34�, S3c � �7=34� calculated numerically as a func-
tion of �m; �. For S3b, the lines correspond to the contour
values 1.0, 1.002, 1.01, 1.03, 1.05, and 1.08, while for S3c they
are 1, 1.001, 0.999, 0.995, 0.99, and 0.98, both from bottom to
top. The short-dashed curves in the plot S3b are the fit (17); the
dotted curves the approximation (16). The light rectangle
marks the astrophysical bounds on �m, the darker one adds
the CMB constraint assuming constant �.
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The potential appears only in the background equations
and, indirectly, in the assumption � ! 1. For this po-
tential, the present equation of state is approximated by
w�0 � 	2=�n� 2� [25] during the tracking regime
(which may or may not extend to the present epoch; in
the latter case w�0 ! 	1). Integrating numerically
Eqs. (10) and (11), we find a fit for m:

m  �0:56�1	1:73�2�
m ; (13)

almost independent of n [in the range n 2 �0; 2�].
We proceed now to second order. We define for each

component b; c the second-order Fourier amplitude
��2�
b;c�k; �� � D2b;c����

�2�
b;c�k� and, following the standard

technique of Fourier convolution (see, e.g., [2,5,9]), we
obtain for D2b;c the equations

D00
2b �

Fb

2
D0

2b 	
3

2
SbD2c �

�
3

2
Sbb�

4

3
m2b2

�
D2

1; (14)

D00
2c �

Fc

2
D0

2c 	
3

2
ScD2c �

�
3

2
Sc �

4

3
m2

�
D2

1; (15)

with the initial conditions D2b;c��in� � D0
2b;c��in� � 0. It

is interesting to note that equations similar to (15) and
(11) have been derived in [7,13] for a general single-
component density expansion of Friedmann equations.
However, the mass nonconservation induced by scalar
gravity introduces nonstandard friction terms Fb;c that
cannot be accounted for within the class explored in
Refs. [7,13]. As it has been shown in [5,6], the dominant
term in the skewness is S3c � 6D2c=D2

1 and S3b �
6D2b=�bD1�

2. To derive an approximate analytical solu-
tion, we can assume D2b � b�2�D2c with a constant sec-
ond-order bias b�2� since, as in the linear equations, the
baryon evolution is driven by the dark matter one. The
bias b�2� is not to be confused with the coefficient b2 of
the Taylor expansion of a nonlinear biasing (see, e.g., [9]).
It turns out that for small �2 the leading nontrivial term is

S3b
S3c

�
b�2�

b2
 1� �2

�
34�m

28m2 � 57�m

�
: (16)

(here we employed the approximation S3c  34=7; see
below). It appears that S3b is almost independent of the
potential slope n and, since m2  �m, also almost inde-
pendent of �m.

The system (10), (11), (14), and (15), along with the
background equations, constitutes a complete set of dif-
ferential equations for the unknowns b;m; S3b; S3c as a
function of the cosmological parameters w�;�m; �. Each
of the functions b;m; S3b; S3c depends on � and is there-
fore in principle a test of the equivalence principle and,
more in general, of coupled dark energy. In the long term,
this redundancy can be exploited to set more stringent
limits to the coupling and to break degeneracies with
other cosmological parameters. However, b and S3c re-
quire the detection of the large-scale clustering of the
dark matter component, while m, the growth rate, re-
quires accurate observations over an extended range of
181102-3
redshifts and, consequently, the problematic removal of
redshift-dependent selection effects. Moreover, Eq. (13)
implies a strong level of degeneracy between � and the
parameters that enter �m�z�. On the other hand, S3b is an
efficient probe of the scalar interaction since it requires
only observations of the baryon distribution at a fixed
redshift.

We plot in Fig. 1 the functions S3b;c��m; �� obtained
through numerical integration. As anticipated, we find
that S3c is close to the standard value 34=7 in the whole
parameter range while S3b deviates from it by more than
1% for � > 0:1, following the approximate fit

S3b �
34

7
�1� 0:6�2��	0:0005��2�0:025

m : (17)

This result is almost independent of �m (in fact the last
factor can be omitted) and n and also independent of time
(if � is constant) and of scale: It shows therefore that S3b
is a direct test of the equivalence principle.

The analytical behavior (16) is relatively accurate (er-
ror on S3b < 1%) only for �< 0:2. Thus far, we assumed
181102-3
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�b � 0 but it is not difficult to see that, in the limit �b �
�c, Eqs. (13), (16), and (17) generalize to a finite �b by
simply replacing �2 with �c��c 	 �b�. Let us remark
also that, although we performed the numerical integra-
tion with a dark energy potential, the scalar field need not
be the field responsible of the accelerated expansion. The
only condition on the potential concerning the validity of
our numerical calculations is that the interaction scale �
be much larger than the astrophysical scale at which the
observations are carried out. For instance, the original
Brans-Dicke model, which does not give acceleration and
where V � 0, fulfills this condition.

In [9], the authors compiled an extensive list of present
constraints on the smoothed skewness ŜS3 from angular
and redshift galaxy catalogs. Although several experi-
ments quote values of ŜS3 with errors of 5%–10%, many
results are clearly not compatible with each other. This
points to the presence of systematic errors, likely to reside
in sampling and finite volume effects and redshift dis-
tortions, so it is premature to perform a direct comparison
with data. However, analyses from larger redshift surveys
such as the Sloan Digital Sky Survey (SDSS) promise to
measure ŜS3 at large scales with a precision of less than
10% and perhaps down to 1% (see, e.g., preliminary
results in [26] and, for the 2dF survey, in [27]). At this
level, SDSS might detect the scalar interaction or put a
stringent upper limit to its present value.

It is, however, to be stressed that our calculations refer
to the properties of baryons, while observations deal with
light, i.e., with the fraction of baryons that collapsed in
sufficiently bright galaxies. The relation between the two
populations is not well known, although at large scales,
where hydrodynamical effects and strong nonlinearities
are smeared out, one does not expect significant segrega-
tion. To ascertain this relation, it will be necessary to
perform N-body simulations with broken equivalence, as
in [23] or study objects that seem to trace with more
accuracy (or in a simpler way) the underlying baryon
component, such as Lyman-� clouds [28]. Errors less
than 10% in the bispectrum at large scales are predicted
in [29] using a Lyman-� forest that simulate SDSS data.

Although models with non-Gaussian initial conditions,
nongravitational effects, or nonstandard Friedmann
equations predict S3 � 34=7 [7,9,13], they also predict a
specific time and/or scale dependence that makes them
distinguishable, at least in principle, from a scalar inter-
action. Further information can be gained by the full
bispectrum B�k1;k2� � h�k1

�k2
�	k1	k2

i, rather than by
the integrated skewness. In [30], it has been shown that
the scale dependence of the bispectrum may be of great
help in constraining primordial non-Gaussianity. The
behavior of the bispectrum for the present model will
be reported in subsequent work. Forthcoming large-scale
skewness data offer therefore the exciting opportunity to
test the equivalence principle in a realm inaccessible to
laboratory experiments.
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