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We investigate the lifetime of macroscopic entanglement under the influence of decoherence. For
Greenberger-Horne-Zeilinger—type superposition states, we find that the lifetime decreases with the
size of the system (i.e., the number of independent degrees of freedom), and the effective number of
subsystems that remain entangled decreases with time. For a class of other states (e.g., cluster states),
however, we show that the lifetime of entanglement is independent of the size of the system.
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The question as to whether or not entanglement—a
genuine feature of quantum mechanics—can persist in a
macroscopic (i.e., ‘“‘classical”’) world has entertained
quantum physicists since Schrodinger introduced his no-
torious gedanken experiment known as ““Schrodinger’s
cat” [1,2]. While entangled states of microscopic matter,
such as a few atoms or ions in a trap, can now be prepared
in the laboratory [3], it is often argued that for a large
number N of particles this task would become exceed-
ingly difficult, since the effective decoherence rate would
grow linearly with the size of the system N.

In its simplest version, the argument is based on the
observed evolution of superposition states of the form
IGHZ) = 1//2(]0)®N + |1)®V), also called Greenberger-
Horne-Zeilinger (GHZ) states, of a system of N spins or
qubits interacting with uncontrollable degrees of freedom
of the environment, described, e.g., by a heatbath. The
rate at which this state decoheres scales indeed as kA,
where k is the decoherence rate of a single qubit. While
this observation is correct, it is not clear whether the
scaling of the decoherence rate with the size of the system
N is a special property of GHZ states or a general feature
of all multiparticle entangled states. This means that the
conclusions that are usually drawn from this observation,
namely, that macroscopic entanglement, i.e., entangle-
ment between a macroscopic number of particles, neces-
sarily becomes exponentially fragile with N, are
questionable and will indeed be refuted in this Letter.

To this aim, we investigate the effect of decoherence on
the entanglement properties of a class of multiparticle
entangled states. We consider the lifetime of entanglement
between a variable number of subsystems of the system.
Specifically, we consider both the time after which the
distillable entanglement of the state vanishes and the time
after which the state becomes separable. These lifetimes
are, in general, finite. We determine the scaling behavior
of these lifetimes with N. For GHZ states we find that an
increasing decoherence rate indeed results in a lifetime of
distillable N-party entanglement [4,5] that decreases with
N. For many other states (e.g., cluster states [6]), in
contrast, we show that the lifetime of genuine multiparty
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entanglement is independent of the size of the system N.
More specifically, we find that the lifetime of any state
that belongs to the class of graph states |¢)s [6], which
contains the GHZ and cluster state as particular cases, is
bounded from below by a quantity which depends only on
the maximum degree of the associated graph. We remark
that for cluster states the degree of the graph is constant,
while for GHZ states it increases with N [see Fig. 1(a)].
This implies that genuine multiparticle entanglement of a
macroscopic number of particles is possible and can per-
sist for time scales that are independent of the size of the
system.

When describing multiparticle entanglement, a central
notion is the partitioning of a system of N particles into
M = N groups. Each group may consist of several par-
ticles, which are then considered as a single subsystem
with a higher-dimensional state space. If we associate a
specific spatial distribution with the particles, as in the
case of spins on a lattice, partitionings may be chosen that
correspond to a rescaling of the size of the subsystems, as
it is used in statistical physics [see Fig. 1(a)]. In the present
context, we will be interested in the behavior of the
distillable entanglement under a coarsening of the parti-
tions. We will consider the case where the entire lattice of
N qubits is in a graph state and compare, in particular, the
two cases of GHZ states and cluster states. On the one
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FIG. 1. (a) GHZ states, 1D and 2D cluster states. (b) Upper
bound on lifetime k7 of M-party entanglement for GHZ states
in systems with N — oo particles for different M. (c) Same as
(b) but with double-logarithmic axis. Note that the same
figures are obtained for the lifetime of N-particle entanglement
in N-particle systems (see text).
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hand, this approach allows us to determine the effective
size of the system, i.e., the number of subsystems which
are still entangled after a certain time. On the other hand,
we can investigate the behavior of entanglement under
rescaling in the asymptotic limit N — oo. We find that the
lifetime of the distillable entanglement of the cluster state
is largely independent of the size of the partitions, and
thus the same on all scales. For the GHZ state, in contrast,
we find that the distillable entanglement vanishes after an
arbitrary short time on all scales, as long as we consider
partitions of finite size. However, if we allow the sizes of
the partitions to become macroscopic themselves (in the
sense that the N qubits are divided into a fixed number of
M cells whose size N/M grows to infinity as N — 00),
then the lifetime of this M-party distillable entanglement
becomes finite and scales to leading order as 1/(xM).

Throughout this Letter we will mainly use a decoher-
ence model corresponding to individual coupling of par-
ticles to a thermal bath in the large T limit, described by
individual depolarizing channels. The same results can
also be obtained, more generally, for models described by
any quantum optical master equation of the Lindbladt
form [7]. Furthermore, the results also hold for correlated
noise with a finite correlation length.

We consider depolarizing channels with noise parame-
ter p = p(r) = e "', where k is a decay constant deter-
mined by the strength of the coupling to the environment
and ¢ is the interaction time. The channel acting on
particle k is described by the completely positive map

Ep = p@Wp + {1 = p0)/B Y2, oW po'?, where o
are the Pauli matrices with oy = 1. We are interested in
the entanglement of a given initially pure state |¥) as a
function of time. That is, the initial state suffers from
decoherence described by this model and evolves after
time ¢ to

p(t) = E1& -+ Ex|TXVI. (1

We will use as a criterion the distillable entanqglement
of the system, which tells one whether it is possible to
create true (irreducible) multiparticle entangled pure
states. That is, we consider N distinct parties each holding
a particle belonging to the N-particle state p. The state p
is called N-party distillable entangled if there exists a
local protocol (i.e., the parties act independently on their
systems and are allowed to communicate classically)
such that one can obtain from a sufficiently large number
of copies of p some true N-particle entangled pure state
[5]- Note that it is not necessary to specify the kind of
multiparticle entangled pure state which is created, as all
true N-party entangled pure states can be obtained from
each other if several copies of the state are available [5].
We remark that a necessary condition for N-party distil-
lability is that the partial transpositions with respect to
any group of parties are nonpositive (see [4]).

We start out by investigating the entanglement
properties of GHZ states under this decoherence
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model. One readily finds [8] that |GHZ) evolves to a
state p(t) diagonal in the GHZ basis {|Wj ., ) =1/
V2(lkyky - < ky—10) = lkiky - - ky— 1)}, k; €10, 1},
k; =1 — k;, with coefficients A, that depend on k =
> jkj. For k # 0 we have A/ = A = A, where A, =
[+ p)*A = pN T+ A+ N1 = p)¥]/2Y", while
Ag =X+ pV/2, Ay = Ay — pV/2. Note that A, =
Ay = -+ = Ay/p)- The partial transposition with respect
to a group B, which contains exactly k parties is positive,
p(t)"s = 0 if and only if [4] pV = 2. For k =1 one
observes that the threshold value p. = e “eit where the
partial transposition with respect to one particle becomes
positive increases with N. This implies that for t = 7_; =
7 the state is no longer N-party distillable entangled and
thus the lifetime 7 of true N-party entanglement de-
creases with the size of the system as expected [see
Figs. 1(b) and 1(c)].

We now turn our attention to a larger class of multi-
particle entangled states, the so-called graph states [6].
This class includes a variety of entangled states, e.g.,
GHZ states, cluster states, and code words of error cor-
rection codes [9]. Consider a graph G = (V, E) which is a
set of N vertices V connected in a specific way by edges
E. The edges specify the neighborhood relation between
vertices, and the degree of a vertex is given by the number
of its neighbors. Graph states are associated with the
“interaction’ graph G as follows: Starting with a specific
product state, the graph state |W;) is obtained by applying
an Ising-type interaction for time 7 between all neigh-
boring vertices, ie., |5 = [[yperUnl+)®", where

Uy = e 1" =0/2000-0002 ang | 4) = 1/4/2(10) +
[1)). Equivalently [6], graph states can be described as
joint eigenstates of a set of N commuting correlation
operators K; given by K; = aSﬁ 1‘[{,@‘,’}@0?‘). The graph
states I\PMl 1y fUlfill the set of eigenvalue equations
KilW sy = GOy 2V sy €40, 13
and form a basis in H = (C?)®V.

In the following, we consider a linear cluster state of N
qubits [6] specified by the graph G with edges {k, k +
1} V k and investigate the entanglement properties of this
state under the decoherence model described by Eq. (1).
We show that the lifetime of distillable N-particle entan-
glement is for this state independent of the size of the
system. In particular, we establish a lower bound 7. on the
lifetime 7. of distillable N-party entanglement for such
states which is independent of the number of particles V.
This is in sharp contrast to the behavior of GHZ states.

In order to distill N-party entangled states, it is suffi-
cient that maximally entangled pairs between all neigh-
boring parties can be created, which we will show in the
following. We emphasize that we use the distillability of
neighboring pairs only as a tool to prove N-party dis-
tillability and it does not mean that the entanglement of
the cluster state was in some sense only ‘“‘bipartite.” We
make use of the following properties of graph states:
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(i) Measuring all but two neighboring particles, say k, j,
of a graph state I\If()) in the eigenbasis of o, results in the
creation of another graph state with only a single edge
{k, j} [10]. The resulting state of particles , j is up to local
o, operations equivalent to a maximally entangled state
of the form |®) = 1/+/2(|0),10), + [1),]1),), where |k),
[1k.)] denote eigenstates of o [o.], respectively. (ii) The
action of a depolarizing channel &£, on a graph state can
equivalently be described by a map M, whose Kraus
operators contain only products of Pauli matrices o,
and the identity, where here o, may act on particles k
and its neighbors, i.e., particles which are (in the corre-
sponding graph) connected by edges to particle k. For a
linear cluster state, M;ps = p(t)ps + {[1 — p(2)]/4} X

P oApGAl, with Ag=1, A; =¥ Vg™ 4, =
gV gk gk, Ay = o This follows from Uf\f)l‘lfﬂ> =
(—1)“.f0'§j)Kj|\Ifﬁ), where Ufrj)Kj = a'gj_l)a'(zjﬂ), and
similarly for o}/,

A sufficient condition when bipartite entanglement
between two neighboring particles, say, particle k and
k + 1, can be created from p(r) can be found straight-
forwardly. To this aim, one performs measurements in
the eigenbasis of o, on all but particles k and &k + 1.
From properties (i) and (ii) follows that these measure-
ments commute with the action of the map on the clus-
ter state. The resulting state can thus be described by
MMy - My P (PRI @ L)X x|, where [x) is a
state of the remaining (N — 2) particles, and |®) is a
maximally entangled state equivalent up to o, operations
to |®). It is important to note that M; acts trivially on
particles k and k + 1 if j& {k — 1,k k + 1, k + 2} since
any kind of errors in graph states effect only the corre-
sponding particles and/or its neighbors [see (ii)]. This
implies that the resulting state p; ;4 of particles k and
k + 1 after tracing out the remaining particles can be
obtained by considering only the (reduced) action of
My, My, Myt y, My, on the state |O)®P|. One has
that p, .+ is distillable if its partial transpose is non-
positive [11] and finds a threshold value p. = 0.7167
(kt< = 0.3331). We emphasize that this threshold value
is independent of N, as only errors acting on the direct
neighborhood of the pair of particles in question influen-
ces the threshold value. Since this method allows one to
distill maximally entangled pairs between arbitrary pairs
of neighboring particles, we have that for p = p_. the
linear cluster state remains N-party distillable, indepen-
dent of the number of particles N.

We point out that one can apply the same reasoning as
used above to show that similar results hold for all graph
states associated with some lattice geometry [7]. If we
consider, for instance, a family of graph states whose
maximum degree does not increase with the number of
particles N and two neighboring vertices k [j] of the cor-
responding graph with disjoint sets of n; + 1 [n; + 1]
neighbors, respectively, one can distill a maximally en-
tangled pair between the two parties if p?/4[(1 + p™) X
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(14 p™)]+ (1 — p?)/4 > 1/2. 1t turns out that for kt =
In(})/ [(%) + 2], where d; is the degree of vertex i,
the state is certainly distillable, independent of N. For
cluster states corresponding to a regular 2D (3D) lattice
one finds p. = 0.8281 (kt- = 0.1886) [p~ = 0.8765
(kt- = 0.1318)], respectively. This dependence on the
degree is consistent with the results obtained for GHZ
states, which correspond to a graph with edges (1, k) V k.
The degree of this graph increases with N and thus the
lifetime decreases.

Further generalizations of these results are possible
(see [7] for details). One can show that not only graph
states but all states produced by an Ising-type interaction,
turned on for time ¢ # 0, whose corresponding
(weighted) interaction graphs are associated with some
lattice geometry, have a lifetime of distillable entangle-
ment which is independent of the size of the system. This
follows from the fact that measurements in the z basis can
effectively decouple sets of systems connected in the
interaction graph. Furthermore, the scaling behavior of
the lifetime of entanglement with the size of the system
turns out to be largely independent of the specific deco-
herence model used. In particular, a similar behavior is
found for all individual couplings of particles to an
environment described by a quantum optical master
equation of the general Lindbladt form. In addition, for
all those decoherence models which correspond to noise
which acts locally (in the sense that all Kraus operators A;
act nontrivially on a finite, localized number of subsys-
tems), one again finds that the lifetime of cluster and
similar states is independent of the size of the system N.

In the following we investigate the effective size of the
system that remains entangled during the decoherence
process. The fact that N-party entanglement vanishes
after a certain time does not imply that all entanglement
has disappeared. We consider partitions of the N-particle
state into M groups, where now parties within one group
are allowed to perform joint operations. For states asso-
ciated with some lattice geometry, specific partitions
correspond to a rescaling of the size of the subsystems.
An N-particle state is called M-party distillable entangled
if there exists some partitioning into M parties (M par-
titioning) such that the state is distillable to some true
M-party entangled pure state [4]. We will be interested in
the lifetime of M-party entanglement.

For GHZ states, one can determine analytically the
lifetime of M-party entanglement for any M. Recall the
condition for positivity of partial transposition with re-
spect to a group of k parties, p¥ = 2A,. Since Aj = A; for
Jj = i, we have that the group containing the fewest num-
ber of parties determines the threshold value for which
the state is no longer M-party distillable, as the corre-
sponding partial transposition is the first one to become
positive. Thus M-party entanglement corresponding to a
specific M partitioning has longest lifetime if all groups
have (approximately) the same size. For a minimal group
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size of m particles, an N-particle GHZ state can contain at
most M = [N/m] such groups of size m. This allows one
to obtain the maximum lifetime of M-party entanglement
which is determined by pV = 2A,,.

One obtains an upper bound on the lifetime of M-party
entanglement if one approximates A,, by some A,, < A,,
and chooses A, = (1 — p)"(1+ p)N =" /2N*1 1n this case,
the partial transposition with respect to a group of m par-
ties is certainly positive if 2A,, = p", which can be re-
written as m =< Nlog[2p/(1 + p)]/log[(1 — p)/(1 + p)].
Using that M = [N/m], we have that an N-particle state
is no longer M-party entangled if

M = [log(1 — p) — log(1 + p)]/[log(2p) — log(1 + p)].
(2)

On the one hand, Eq. (2) [illustrated in Figs. 1(b) and 1(c)]
provides an upper bound on the lifetime «7,, of M-party
entanglement in the system. On the other hand, for a fixed
time ¢, Eq. (2) allows one to determine the maximum M
of distillable multiparty entanglement remaining in the
system. One observes [see Figs. 1(b) and 1(c)] that the
maximum M rapidly decreases with 7. For xt << 1, one
finds that M = —2log(k1)/(kt), while for kr > 0.8049 we
have that also 2-party entanglement disappears and the
state becomes fully separable as all partial transposes are
positive (which is a sufficient condition for separability
for such states [4]). We also point out that this bound on
the maximal size of M-party entanglement is independent
on the number of particles N. That is, even if one consid-
ers groups of size m — oo (for a total number of particles
N — 00), the maximum number M of such groups which
remain entangled after a certain time ¢ is finite. While for
the finest partition of the system into N parties the life-
time 7y essentially scales like 1/N, for the coarsest
partition of the N parties into two groups we have no
scaling behavior with N, i.e., k7, = const. It follows that
in the limit N — oo any partitioning in groups of finite
size m leads to a vanishing lifetime of the corresponding
M = N/m party entanglement. Only if one considers a
fixed number of groups M whose size m = N/M grows to
infinity as N — oo, i.e., the groups are of macroscopic
size, one obtains a finite lifetime of the corresponding
M -party entanglement.

We remark that Eq. (2) also allows one to determine the
lifetime of genuine N-party entanglement, obtained from
M = N/m by setting m = 1. In a similar way, one can
obtain a lower bound on the lifetime of M-party entangle-
ment by choosing A/, =2(1 — p)"(1+ p)N =" /2Nt1> ) .
One finds that for M <log[2(1— p)/(1+ p)l/
log[2p/(1 + p)] all partial transposition with respect to
this M partitioning are certainly nonpositive, which for
these kinds of states already ensures that the state is
M-party distillable [4]. The condition for 2-party en-
tanglement has recently been derived by Simon and
Kempe in Ref. [8], who observed that the threshold value
for p with respect to the partition N/2 — N/2 decreases
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with the size of the system. Based on this observation,
they conclude that GHZ states of more particles are more
stable against local decoherence. However, as pointed out
in this Letter, the effective number of subsystems that
remain entangled decreases with time, such that the en-
tanglement becomes bipartite when approaching the
threshold value found by Simon and Kempe. The lifetime
of genuine N-party entanglement thus decreases in fact
with the size of the system.

On the other hand, for cluster states (and similar graph
states) one can show that there is no scaling with respect
to either the size of the partitions or N. To be specific, for
any cluster state there exist times f-, - independent of N
such that for # = ¢, the state p(z) is separable with respect
to the finest partition (and hence not distillable with
respect to any partition), while for ¢t <. the state is
distillable with respect to the finest partition (and hence
distillable with respect to any partition). While the ex-
istence of such a time 7. was already shown earlier in this
Letter, one can prove [7] that p(¢) is fully separable for
Kkt = ki~ with kt= = —2mIn(x/2 — 1), where m is the
degree of the graph.

In this Letter we studied the behavior of multiparticle
entangled states under decoherence. For GHZ states, we
found that the lifetime of true M-party entanglement
decreases with the size of the system and the effective
number of entangled subsystems decreases with time. For
cluster and similar graph states, however, we have shown
that the lifetime of M-party entanglement is independent
of the size of the system. These results suggests that true
multiparticle entanglement in macroscopic objects can be
more stable (and might be more common) than previously
thought.
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