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Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks
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We study the effect of the connectivity pattern of complex networks on the propagation dynamics of
epidemics. The growth time scale of outbreaks is inversely proportional to the network degree
fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree
distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical
dynamics. Once the highly connected hubs are reached, the infection pervades the network in a
progressive cascade across smaller degree classes. The present results are relevant for the development
of adaptive containment strategies.
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outbreaks and find that the growth of infected individuals
is governed by a time scale � proportional to the ratio

[2,18], consisting of a mean-field description of the
system in which all vertices are considered as being
The connectivity pattern of the network of individual
contacts has long been acknowledged as a relevant factor
in determining the properties of epidemic spreading phe-
nomena [1,2]. This issue assumes a particular relevance in
the case of networks characterized by complex topologies
and very heterogeneous structures [3–7] that in many
cases present us with new epidemic propagation scenarios
[8–13]. A striking example of this situation is provided
by scale-free networks characterized by large fluctuations
in the number of connections (degree) k of each vertex.
This feature usually finds its signature in a heavy-tailed
degree distribution with power-law behavior of the form
P�k� � k��, with 2 � � � 3, that implies a nonvanishing
probability of finding vertices with very large degrees
[3–5,14]. The latter are the ‘‘hubs’’ or ‘‘superspreaders’’
[1] responsible for the proliferation of infected individu-
als, whatever the rate of infection characterizing the
epidemic, eventually leading to the absence of any epi-
demic threshold below which the infection cannot initiate
a major outbreak [10]. This new scenario is of practical
interest in computer virus diffusion and the spreading of
diseases in heterogeneous populations [4–7]. It also raises
new questions on how to protect the network and find
optimal strategies for the deployment of immunization
resources [15–17]. Thus far, however, studies of epidemic
models in complex networks have been focused on the
stationary properties of endemic states or the final preva-
lence (number of infected individuals) of epidemics. The
dynamical evolution of the outbreaks has been instead far
less investigated and a detailed inspection of the temporal
behavior in complex topologies is still missing.

In this Letter, we intend to fill this gap by providing a
first analysis of the time evolution of epidemic outbreaks
in complex networks with highly heterogeneous connec-
tivity patterns. We consider the time behavior of epidemic
0031-9007=04=92(17)=178701(4)$22.50 
between the first and second moment of the network’s
degree distribution, �� hki=hk2i. This implies an instan-
taneous rise of the prevalence in very heterogeneous net-
works where hk2i ! 1 in the infinite size limit. In
particular, this result shows that scale-free networks
with 2 � � � 3 exhibit, along with the lack of an intrin-
sic epidemic threshold, a virtually infinite propagation
velocity of the infection. Furthermore, we study the de-
tailed propagation in time of the infection through the
different degree classes in the population. We find a strik-
ing hierarchical dynamics in which the infection propa-
gates via a cascade that progresses from higher to
lower degree classes. This infection hierarchy might be
used to develop dynamical ad hoc strategies for network
protection.

In order to study the dynamical evolution of epidemic
outbreaks, we shall focus on the susceptible-infected (SI)
model in which individuals can be in two discrete states,
either susceptible or infected [2,18]. Each individual is
represented by a vertex of the network and the edges are
the connections between individuals along which the
infection may spread. The total population (the size of
the network) N is assumed to be constant and, if S�t� and
I�t� are the number of susceptible and infected individu-
als at time t, respectively, then N 
 S�t� � I�t�. In the SI
model, the infection transmission is defined by the
spreading rate 
 at which susceptible individuals acquire
the infection from an infected neighbor. In this model,
infected individuals remain always infective, an approxi-
mation that is useful to describe early epidemic stages in
which no control measures are deployed. We shall see in
the following that the results obtained for the SI model
can be readily generalized to more complex schemes.

A first analytical description of the SI model can be
undertaken within the homogeneous mixing hypothesis
2004 The American Physical Society 178701-1
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equivalent. In this case, the reaction rate equation for the
average density of infected individuals i�t� 
 I�t�=N (the
prevalence) reads as

di�t�
dt


 
hkii�t��1� i�t�
: (1)

The above equation states that the growth rate of infected
individuals is proportional to the spreading rate, 
, the
density of susceptible vertices that may become infected,
s�t� 
 1� i�t�, and the number of infected individuals in
contact with any susceptible vertex. The homogeneous
mixing hypothesis considers that this last term is simply
the product of the number of neighbors hki and the aver-
age density i�t�. Obviously, this approximation neglects
correlations among individuals and considers that all
vertices have the same number of neighbors hki; i.e., it
assumes a perfectly homogeneous network. At small
times, when the density of infected vertices is very small,
we can neglect terms of order O�i2� and obtain the lead-
ing behavior i�t� ’ i0et=�H , where i0 is the initial density
of infected individuals and �H 
 �
hki��1 is the time
scale governing the growth of the infection in a homoge-
neous network.

The above calculations recover that the outbreak’s time
scale �H is inversely proportional to the epidemic repro-
duction rate, i.e., the mean number of infections gener-
ated by each infected individual. However, in populations
with a heterogeneous connectivity pattern, it is known
that the reproduction rate depends upon the contacts’
fluctuations [2], and it is natural to expect that also the
outbreaks’ time scale is analogously affected. Indeed, in
heterogeneous networks the degree k of vertices is highly
fluctuating and the average degree is not anymore a mean-
ingful characterization of the network properties. In order
to take fully into account the degree heterogeneity in the
dynamical evolution, it is possible to write down the
whole set of reaction rate equations for the average den-
sities of infected vertices of degree k, ik�t� 
 Ik�t�=Nk,
where Nk and Ik�t� are the number of vertices and infected
vertices within each degree class k, respectively [10]. For
the SI model, the evolution equations read as

dik�t�
dt


 
k�1� ik�t�
�k�t�; (2)

where the creation term is proportional to the spreading
rate 
, the degree k, the probability 1� ik that a vertex
with degree k is not infected, and the density �k of
infected neighbors of a vertex of degree k. The latter
term is thus the average probability that any given neigh-
bor of a vertex of degree k is infected. In the case of
uncorrelated networks [19], �k � � is independent of
the degree of the emanating edge. The probability that
each edge of a susceptible is pointing to an infected
vertex of degree k0 is proportional to the fraction of edges
emanated from these vertices. By considering that at least
one of the edges of each infected vertex is pointing to
178701-2
another infected vertex, from which the infection has
been transmitted, one obtains

��t� 


P
k0
�k0 � 1�P�k0�ik0 �t�

hki
; (3)

where hki 

P

k0k
0P�k0� is the proper normalization factor

dictated by the total number of edges. A reaction rate
equation for ��t� can be obtained from Eqs. (2) and (3).
In the initial epidemic stages, we neglect terms of order
O�i2�, obtaining the following set of equations:

dik�t�
dt


 
k��t�; (4)

d��t�
dt


 

�
hk2i
hki

� 1

�
��t�: (5)

These equations can be solved with the uniform initial
condition ik�t 
 0� 
 i0 yielding for the total average
prevalence i�t� 


P
kP�k�ik�t�:

i�t� 
 i0

�
1�

hki2 � hki

hk2i � hki
�et=� � 1�

�
; (6)

where

� 

hki


�hk2i � hki�
: (7)

This readily implies that the growth time scale of an
epidemic outbreak is related to the graph heterogeneity.
Indeed, the ratio � 
 hk2i=hki is the parameter defining
the level of heterogeneity of the network, since the nor-
malized degree variance can be expressed as �=hki � 1
and therefore high levels of fluctuations correspond to
� � hki. In networks with a Poisson degree distribution
in which � 
 hki � 1, we recover the result � ’ �
hki��1.
Instead, in networks with very heterogeneous connectiv-
ity patterns, � is very large and the outbreak time scale �
is very small, signaling a very fast diffusion of the
infection. In particular, in scale-free networks character-
ized by a degree exponent 2 � � � 3, we have ��
hk2i ! 1 with the network size N ! 1. Therefore, while
� is a function of the finite size N, for large scale-free
networks we face a virtually instantaneous rise of the
epidemic incidence.

It is worth stressing that these results can be easily
extended to the susceptible-infected-susceptible and the
susceptible-infected-removed models (SIR) [2], in which
Eq. (2) contains an extra term ��ik�t� defining the rate at
which infected individuals of degree k recover and be-
come again susceptible or removed from the population,
respectively. In addition, in the SIR model, the normal-
ization imposes that sk�t� 
 1� ik�t� � rk�t�, where rk�t�
is the density of removed individuals of degree k. The
inclusion of the decaying term ��ik does not change the
picture obtained in the SI model. By using the same
approximations, the time scale is found to behave as
178701-2
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�� hki=�
hk2i � ��� 1�hki
. In the case of diverging
fluctuations, the time-scale behavior is therefore still
dominated by hk2i, and � is always positive whatever
the spreading rate 
. This allows one to recover the
absence of an epidemic threshold, i.e., the lack of a
decreasing prevalence region in the parameter space.

In order to check these analytical results, we have
performed numerical simulations of the SI model on
networks generated with the Barabási-Albert (BA) algo-
rithm [20]. These networks have a scale-free degree dis-
tribution P�k� � k�3, and we use different network sizes
N and minimum degree values m in order to change the
level of heterogeneity, that in this case is given by ��
m lnN. Simulations use an agent-based modeling strategy
in which at each time step the SI dynamics is applied to
each vertex by considering the actual state of the vertex
and its neighbors. It is then possible to measure the
evolution of the average number of infected individuals
and other quantities, by averaging over 103 realizations of
the dynamics. In addition, given the stochastic nature of
the model, different initial conditions and network real-
izations can be used to obtain averaged quantities. In
Fig. 1, we report the early time behavior of outbreaks in
networks with different heterogeneity levels and the be-
havior of the measured � with respect to hki=
�hk2i �
hki�. The numerical results recover the analytical predic-
tion with great accuracy. Indeed, the BA network is a
good example of a heterogeneous network in which the
approximations used in the calculations are satisfied
[19]. In networks with correlations, we expect to find
different quantitative results but a qualitatively similar
framework as happens in the case of the epidemic thresh-
old evaluation [19].

The previous results show that the heterogeneity of
scale-free connectivity patterns favors epidemic spread-
ing not only by suppressing the epidemic threshold, but
also by accelerating the virus propagation in the popula-
tion. The velocity of the spreading leaves us with very
short response times in the deployment of control mea-
sures, and a detailed knowledge of the way epidemics
propagate through the network could be very valuable in
the definition of adaptive strategies. Indeed, the epidemic
diffusion is far from homogeneous. The simple formal
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FIG. 1. (a) Average density of infected individuals versus time i
exponential fit obtained in the early times (lines) and the numerical
to top). (b) Measured time scale � in BA networks as obtained from
values of m and N corresponding to different levels of heterogene
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integration of Eq. (2) written for sk 
 1� ik yields
sk�t� 
 s0ke

�
k��t�, where ��t� 

R
t
0 dt

0 ��t0�. This result
is valid for any value of the degree k and the function ��t�
is positive and monotonically increasing. This last fact
implies that sk is decreasing monotonically towards zero
when time grows. For any two values k > k0, and what-
ever the initial conditions s0k and s0k0 are, there exists a
time t� after which sk�t�< sk0 �t�. This means that vertices
belonging to higher degree classes are generally infected
more quickly. A more precise characterization of the
epidemic diffusion through the network can be achieved
by studying some convenient quantities in numerical
spreading experiments in BA networks. First, we measure
the average degree of the newly infected nodes at time t,
defined as

k inf�t� 


P
k
k�Ik�t� � Ik�t� 1�


I�t� � I�t� 1�
: (8)

In Fig. 2(a), we plot this quantity for BA networks as a
function of the rescaled time t=�. The curves show an
initial plateau that can be easily understood by consider-
ing that, at very low density of infected individuals i,
each vertex will infect a fraction of its neighbors without
correlations with the spreading from other vertices. In
this case, each edge points to a vertex with degree k with
probability kP�k�=hki and the average degree of newly
infected vertices is given by kinf�t� 
 hk2i=hki. After this
initial regime, kinf�t� decreases smoothly when time in-
creases. The dynamical spreading process is therefore
clear; after the hubs are very quickly infected, the spread
is going always towards smaller values of k. This is
confirmed by the large time regime that settles in a
plateau kinf�t� 
 m; i.e., the vertices with the lowest de-
gree are the last to be infected.

Further information on the infection propagation is
provided by the inverse participation ratio Y2�t� [21]. We
first define the weight of infected individuals in each class
degree k by wk�t� 
 Ik�t�=I�t�. The quantity Y2 is then
defined as

Y2�t� 

X
k

w2
k�t�: (9)
10 100

<k>/λ(<k
2
>−

10

100

τ 

b)

<k>)

n a BA network of N 
 104 with m 
 2. The inset shows the
curves i�t� for networks with m 
 4, 8, 12, and 20 (from bottom
exponential fitting versus the theoretical prediction for different
ity.

178701-3



1 10
t/τ

0

20

40

60

k in
f(t

) 

a)

1 10
t/τ

0

0,1

0,2

Y
2(t

)

b)

FIG. 2 (color online). (a) Time behavior of the average degree of the newly infected nodes for SI outbreaks in BA networks of size
N 
 104. Time is rescaled by �. Reference lines are drawn at the asymptotic values hk2i=hki for t � � and m for t � �. The two
curves are for m 
 4 (bottom) and m 
 14 (top). (b) Inverse participation ratio Y2 versus time for BA network of size N 
 104 with
minimum degree m 
 4, 6, 8, 10, 12, 14, and 20, from top to bottom. Time is rescaled with �. The reference line indicates the
minimum of Y2 around t=� ’ 6:5.
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If Y2 � 1=kmax, infected vertices are homogeneously
distributed among all degree classes. In contrast, if Y2

is not small (of order unity) then the infection is localized
on some specific degree classes that dominate the sum of
Eq. (9). In Fig. 2(b), we report the behavior of Y2 versus
time for BA networks with different minimum degree.
The function Y2 has a maximum at the early time stage,
indicating that the infection is localized on the large k
classes, as we infer from the plot of hkinf�t�i [see Fig. 2(a)].
Afterwards Y2 decreases, with the infection progressively
invading lower degree classes, and providing a more
homogeneous diffusion of infected vertices in the various
k classes. Finally, the last stage of the process corresponds
to the capillary invasion of the lowest degree classes
which have a larger number of vertices and thus provide
a larger weight. In the very large time limit, when
the whole network is infected, Y2�t 
 1� 


P
kP�k�

2.
Noticeably, curves for different levels of heterogeneity
have the same time profile in the rescaled variable t=�.
This implies that, despite the various approximations
used in the calculations, the whole spreading process is
dominated by the time scale defined in the early expo-
nential regime of the outbreak.

The presented results provide a clear picture of the
infection propagation in heterogeneous networks. First,
the infection takes control of the large degree vertices in
the network. Then it rapidly invades the network via a
cascade through progressively smaller degree classes. The
dynamical structure of the spreading is therefore charac-
terized by a hierarchical cascade from hubs to intermedi-
ate k, and finally to small k classes. This result, along with
the very fast growth rate of epidemic outbreaks, could be
of practical importance in the setup of dynamic control
strategies in populations with heterogeneous connectivity
patterns. In particular, targeted immunization strategies
that evolve with time might be particularly effective in
epidemics control.
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