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Anomalous Diffusion Probes Microstructure Dynamics of Entangled F-Actin Networks
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We study the thermal motion of colloidal tracer particles in entangled actin filament (F-actin)
networks, where the particle radius is comparable to the mesh size of the F-actin network. In this
regime, the ensemble-averaged mean-squared displacement of the particles is proportional to ��, where
0< �< 1 from 0:1< �< 100 s and depends only on the ratio of the probe radius to mesh size. By
directly imaging hundreds of particles over 20 min, we determine this anomalous subdiffusion is due to
the dynamics of infrequent and large jumps particles make between distinct pores in the network.
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molecular crowding [15,16] as well as hydrodynamic small effects on the overall particle mobility [8], but
The cytoskeleton is composed of dense actin filament
(F-actin) networks that regulate many important cellular
processes such as cell shape, motility, and division [1].
The mechanical properties of these networks control
proper biological function, but these mechanical proper-
ties are challenging to measure in vivo and are difficult to
model theoretically as the details of cytoskeletal micro-
structure are not well understood [2,3]. This has moti-
vated an extensive effort to measure the mechanical
properties and microstructure of reconstituted F-actin
networks in vitro [4–9]. F-actin is a semiflexible polymer,
which is characterized by a persistence length of
10–20 �m, roughly 3 orders of magnitude larger than
the filament diameter of 7 nm [10,11]. In vitro, the con-
tour length of F-actin filaments is typically greater than
20 �m, and semidilute solutions of actin form entangled
networks of semiflexible polymers with an average mesh
size, �, of order 100 nm to 1 �m. Thus, solutions of en-
tangled F-actin are an ideal model system with which to
study the unique dynamics and mechanical properties of
semiflexible polymer networks and to investigate the
implications of the underlying mechanisms of these prop-
erties for the behavior of the cytoskeleton.

The unique mechanical properties of F-actin networks
are determined by structures and dynamics on the scale
of microns. Thus, full elucidation of these properties
demands techniques that probe the behavior at these
length scales; this has inspired the development of micro-
rheological methods, where the motion of micron-sized
tracer particles, driven by thermal, magnetic, or optical
forces, is used to make precise local measurements of
viscosity and mechanical properties at the length scale of
the tracer particle [4–9,12–14]. When the particle radius,
a, is much smaller than �, the one-dimensional mean-
squared displacement (MSD), h�x2���i, of the tracer,
particles evolves linearly in time, h�x2���i � 2D�. In
this case, the particle motion is sensitive to the local
viscosity of the solvent and reflects the effect of macro-
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interactions with the network [5,17], both of which de-
crease the measured diffusion constant, D. By contrast,
when a is larger than �, the particles are constrained by
the surrounding polymer network, and the bead motions
directly reflect the local elasticity of the network [6,8,14].
In the intermediate case, when a � �, the particle motion
should directly probe the network dynamics and mechan-
ics at the scale of a, the critical length scale for important
network properties; unfortunately, very little is known
about particle motion when a � �.

In this Letter, we show that particle motion in F-actin
networks with a � � does indeed directly reflect the
dynamics of the local microstructure of the network.
The ensemble-averaged MSD of particles exhibits
anomalous subdiffusive behavior, h�x2���i � ��, where
0<�< 1, over a wide range of lag times, �. Remarkably,
the diffusive exponent, �, is a function only of the ratio of
the particle radius to the mesh size and can be tuned from
one to zero over a narrow range 0:42< a=� < 1:25. This
subdiffusive behavior is due to the surprising dynamics of
individual particles; they remain trapped within a local-
ized ‘‘cage’’ of actin filaments, but can infrequently
‘‘jump’’ between different cages. The temporal distribu-
tion of these jumps results in the anomalous subdiffusion
and reveals new insights into the length scale dependent
dynamics of the entangled F-actin microstructure.

Lyophilized G-actin is dissolved in deionized water,
dialyzed against fresh G-buffer (2 mM Tris-HCl, 0.2 mM
ATP, 0.2 mM CaCl2, 0.2 mM DTT, 0.005% NaN3, pH 8.0)
at 4 �C for 24 h and used within 7 days of preparation.
G-actin is mixed with carboxylate modified colloidal
spheres with radius a � 0:25 �m and polymerized by
gently mixing with 1=10 of the final sample volume of
10x F-buffer (20 mM Tris-HCl, 20 mM MgCl2, 1 M KCl,
2 mM DTT, 2 mM CaCl2, 5 mM ATP, pH 7.5). The mesh
size in microns is � � 0:3=

�����

cA
p

[4], where the actin con-
centration cA is measured in mg=mL. Modifying the bead
surface chemistry to prevent total protein adsorption has
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does not qualitatively affect our results. The sample is
loaded into a glass sample chamber, sealed with vacuum
grease, and equilibrated under constant rotation for 1 h at
�25 �C. We image approximately 100 particles using
bright field microscopy and follow their dynamics with
a charge-coupled device camera (30 images=s, 1=2000 s
shutter) for 4–30 min [18]. We focus 100 �m into the
sample to avoid wall effects. Particle centers are found in
each image to an accuracy of 20 nm, and particle trajec-
tories are determined [19] to calculate the ensemble-
averaged MSD h�x2���i.

We observe dramatically different temporal depen-
dence of the MSD as a=� is varied. When a > �, the
particle is tightly confined by the local elasticity of the
network, and its thermal motion can then be interpreted
using the framework of microrheology [6,12] to provide
a direct measure of the plateau shear modulus, although
the full frequency dependence of the modulus is not
captured by the thermal motion of a single particle [14].
For example, in an F-actin network with � � 0:17, the
MSD of 0:25 �m particles is approximately constant
between 0.01 and 10 s, as shown by the open squares in
Fig. 1; this corresponds to an elastic modulus of 2 Pa,
which is consistent with the elastic plateau modulus mea-
sured with bulk rheology [20]. By contrast, if a 
 �, the
particle can diffuse freely, and the diffusion coefficient D
can be used to probe the viscosity of the background fluid
of the network. For F-actin with � � 0:75, the MSD of
0:25 �m spheres evolves nearly linearly in time between
0.01 and 10 s, as shown by the open triangles in Fig. 1.
This corresponds to a solvent viscosity of 1.5 cP, slightly
larger than the viscosity of pure water, presumably re-
flecting the effects of hydrodynamic interactions with the
actin network [5]. However, when a is comparable to �,
dramatically different behavior is observed. The MSD
exhibits anomalous subdiffusion, increasing as a power
law for large times, h�x2���i � ��, where the exponent �
depends on the ratio of the particle radius a to the mesh
size �, as shown by the solid symbols in Fig. 1. The
FIG. 1 (color online). MSD of 0:25 �m spheres in F-actin
with � � 0:79 �m (open triangles), 0:55 �m (solid circles),
0:30 �m (solid squares), 0:25 �m (solid triangles), and
0:17 �m (open squares). The solid line indicates a linear fit,
h�x2���i � �.
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motion of earlier lag times is also subdiffusive, albeit
with a slightly larger exponent. Interpreting this anoma-
lous diffusion using microrheological analysis yields a
viscoelastic response, whose magnitude and frequency
dependence are in sharp disagreement with bulk mea-
surements. Thus, the MSD does not provide an accurate or
robust measure of the viscoelasticity and must reflect
alternate microscopic particle dynamics.

To elucidate the origin of these subdiffusive MSDs, we
exploit the advantages of multiple particle tracking [18]
and examine the spatial trajectories of individual tracers
in 0:9 mg=mL F-actin, where a=� � 0:83 for times up to
30 min. The majority of the particles are highly con-
strained by the network, and their trajectories exhibit
fluctuations with nearly Gaussian statistics, as illustrated
by the spatial and temporal trajectories shown in
Figs. 2(a) and 2(b), respectively. If the ensemble average
is restricted to these constrained particles, the MSD
approaches a plateau at times longer than 0.4 s, as shown
by the solid curve in Fig. 3(a); using the microrheology
formalism yields an elastic plateau modulus of 0.15 Pa,
consistent with bulk measurements [20]. However,
roughly 20% of the particles exhibit remarkably different
dynamics. These particles undergo constrained motion
punctuated by large scale jumps, as illustrated by the
spatial and temporal trajectories in Figs. 2(c) and 2(d).
The time scale of these jumps is very short compared to
the residence time within the cages. This suggests that the
particles randomly and rapidly jump between different
microenvironments wherein they are constrained. Within
these local environments, the MSD exhibits the same
time dependence as that of the majority of the particles
which do not display these jumps, as shown by the open
circles in Fig. 3(a), which is the MSD calculated exclu-
sively from the constrained motion, ignoring the jumps.
Thus, the viscoelastic properties of these constraining
microenvironments are the same as those of the rest of
the network. However, when the MSD is ensemble aver-
aged over all particles, including the jumps, the power-
law dependence is recovered, as shown by the solid
(a) (b)

(c) (d)

100 sec

100 sec

FIG. 2. (a) Representative constrained x-y trajectory of a
0:25 �m particle in 0:9 mg=mL (� � 0:31 �m) F-actin over
600 s. (b) The y coordinate of (a) as a function of time.
(c) Representative jumping x-y trajectory from same sample.
(d) The y coordinate in (c) as a function of time.
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FIG. 4 (color online). The scaling of the diffusive exponent,
�, as a function of a=� for several particle radii, a: 0:25 �m
(open squares), 0:32 �m (diamonds), and 0:5 �m (triangles).
Error bars indicate measured sample-to-sample variation.

(a)

(b)

FIG. 3 (color online). (a) MSD of 0:25 �m particles in
0:9 mg=mL F-actin (triangles). The solid line indicates a
power-law fit ��, where � � 0:32. The MSD of constrained
particles (line) and caged portions of jumping particles (open
circles) agree well. (b) Histogram of cage times for jump-
ing 0:25 �m particles in 0:9 mg=mL F-actin (squares). The
dashed line indicates a power-law fit, P��c� � ���

c , with
� � 1:33� 0:04.
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triangles in Fig. 3(a). Thus, the anomalous diffusion re-
sults from the dynamics of the jumps between local
microenvironments.

In order to quantify these dynamics, we determine
the probability distribution of cage times �c within the
local microenvironments. For large cage times, this
probability distribution function scales as a power law
P��c� � A���

c , as shown in Fig. 3(b). The normalization
constant, A, is determined using the minimum cutoff
time necessary for sufficient statistics. To model this
motion, we assume that the particle undergoes a random
walk, but, unlike normal diffusive motion, the time scale
of each step is chosen from a power-law distribution
P��c� � ���

c . When the steps are chosen symmetrically
and 1< �< 2, this model predicts that the MSD should
be subdiffusive, scaling asymptotically as � � �� 1 for
uncorrelated jumps [21]. This relationship is in good
agreement with our data for 0:25 �m spheres in
0:9 mg=mL F-actin, as shown by the power-law fit of � �
0:32 to the MSD in Fig. 3(a) and the power-law fit of � �
1:33 to the probability distribution function of waiting
times in Fig. 3(b). Similar good agreement is obtained for
other actin concentrations. A consequence of such a
power-law distribution is that the mean cage time is not
well defined, consistent with our observation that a ma-
jority of the particles remain constrained over the obser-
vation time.

The ensemble-averaged MSD of the tracers can di-
rectly reveal the dynamical microstructure of the en-
178101-3
tangled actin network. To illustrate this, we determine
the MSD of 0:25 �m particles over a large range of actin
concentrations. The exponent characterizing the subdif-
fusive motion � changed smoothly with the ratio of the
particle radius a to the mesh size �, as shown by the open
squares in Fig. 4. By using several different sized tracer
particles varying from 0:25–0:5 �m, we find that � de-
pends only on the ratio of the bead size to the mesh size,
rather than the actual bead radius or actin concentration
as shown in Fig. 4. Over a very narrow range, 0:42<
a=� < 1:25, we observe anomalous subdiffusion with �
decreasing rapidly as a function of a=�. The steep de-
crease of � in this range shows that even small variations
in a or in � can have large effects on the bead mobility in
a network. These results strikingly demonstrate that the
actin network is inhomogeneous and that the subdiffusive
motion is traplike; thus, interpreting the MSD within the
framework of microrheology must be done with extreme
care for these particles. Instead, the particle motion re-
flects the dynamics of the network on length scales
comparable to the particle size.

While the residence time in the traps or pores is very
long, jumps between pores are rapid; their time scale is
�0:5 s, while the distance between pores is �1 �m. If the
transport between pores were diffusive, the jump time
would be ��1 �m�2=D � 2 s. Thus, the motion between
pores may be diffusive in nature or, alternatively, the
particle may be actively pushed into the new pore by a
release of elastic energy of filaments in the network.

The anomalous subdiffusion of the MSD is reminiscent
of the power-law fluctuations of individual actin filaments
[7]; however, any model for the particle motion that is
restricted to such fluctuations cannot account for the
dependence of the exponent on a=�. To describe this
intermittent motion within a general framework, we for-
mulate a model similar to that used to describe activation
over a free energy barrier. We assume that the jumps
between microenvironments are driven by elastic forces
and are uncorrelated. Then, the waiting time distribution
178101-3
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can be calculated as [22]

P��� / �
d
d�

h��F ��� �F 0���F �0� �F 0�i; (1)

where F reflects the net magnitude of the force acting to
push the tracer particle out of the local microenviron-
ment, and ��F ��� �F 0� is a step function that counts
only jumping events if the parameter F has exceeded a
threshold value F 0. Using the spectral representation of
��x� [23], an analytical expression for P��� can be ob-
tained within the second cumulant approximation for the
correlations of F ���; this behaves asymptotically as
P��� / � d

d� hF ���F �0�i. We assume the elastic forces
arise from coupling between the particle and the trans-
verse fluctuations of the actin filaments in the network;
since these have power-law correlations over time scales
below �1 s [6,7], we assume that F ��� also has power-
law correlations, hF ���F �0�i � ���, and thus � � �� 1.

Despite the absence of precise information about the
correlations of F , several qualitative conclusions can
nevertheless be made. The exponent � will decrease as
the ratio of bead diameter to mesh size increases, since
the larger size of the probe locally cuts off small length
scales and rapid fluctuations; thus, � will vary continu-
ously. By contrast, microrheological models that relate
subdiffusion to the elastic properties of the underlying
network would not display this behavior [12]. In addition,
we would expect the exponent � to be relatively tempera-
ture insensitive, so the temperature dependence of the
subdiffusive exponent should be weaker than that pre-
dicted by trap models based on activation over a broad
distribution of energy barriers [24]. The transport behav-
ior we observe may help account for rheological measure-
ments of cells [25] which have been interpreted in terms
of the ‘‘soft glassy rheology’’ model [26]. In this model,
the standard temperature is replaced with an effective
noise temperature, �. Our experiments suggest that �
may be connected to the elastic energy stored locally in
the actin network and thus related to the decay of the
correlations of F ���.

These results suggest that particle motions must be
interpreted carefully, especially in materials where the
structural length scale or dynamics are not well known. A
judicious choice of particle sizes and concentrations can
probe the dynamics of the surrounding entangled actin
network on varying length scales, yielding information
about the network elasticity, solvent viscosity, and micro-
structure dynamics. Moreover, such cage-jumping behav-
ior may also have implications for understanding the
transport of proteins and macromolecular solutes through
‘‘crowded’’ cytoskeletal environments.
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