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We present an efficient quantum algorithm to measure the average fidelity decay of a quantum map
under perturbation using a single bit of quantum information. Our algorithm scales only as the
complexity of the map under investigation. Thus for those maps admitting an efficient gate decom-
position, it provides an exponential speedup over known classical procedures. Fidelity decay is
important in the study of complex dynamical systems, where it is conjectured to be a signature of
eigenvector statistics. Our result also illustrates the role of chaos in the process of decoherence.
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Fn� � � jh j�U � Upj ij (1) 2 2K
A physical experiment consists of evolving a system
from its initial state and performing a measurement. It is
by now well appreciated that quantum computers can be
used to simulate the evolution of certain quantum systems
efficiently [1]. The time evolution operator U�t0; t� of a
N-dimensional quantum system can always be approxi-
mated by a product of elementary ‘‘gates’’ of aK � log2N
-qubit quantum computer. Moreover, for a wide class of
Hamiltonians, the number of gates L required in this
decomposition grows only polynomially with K and
jt0 � tj: such a simulation is called efficient. This is in
contrast with classical simulations which typically re-
quire computation time growing as the dimension of the
Hilbert space of the system, i.e., exponentially with K.
However, evolution is only one ingredient of a physical
experiment. A quantum simulation should also incorpo-
rate state initialization and readout, which are generally
nontrivial, e.g., there are indications that preparing the
ground state of a generic Hamiltonian requires an expo-
nential number of gates [2]. In this Letter, we present a
quantum circuit to evaluate a dynamical quantity—
namely the average fidelity decay—which circumvents
the need to prepare a complex initial state, requires a very
simple measurement, and uses a single bit of quantum
information.

Fidelity decay (FD) was initially proposed as a signa-
ture of quantum chaos by Peres [3] and has since been
extensively investigated [4,5]. It measures the rate at
which identical initial states diverge when subjected to
slightly different dynamics. The discrete time evolution
of a closed quantum system can be specified by a unitary
operator U, where ���n� � Un�0�Uy�n. To examine FD,
we construct a slightly perturbed map Up, where Up �
UP with P � expf�i
Vg for some small 
 and a
Hermitian matrix V. It is conjectured that the overlap
(or fidelity)
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between initially identical states  undergoing slightly
different evolutions, U and Up, should decay differently
(as a function of the discrete time n) for regular and
chaotic dynamics [3]. While the behavior of these decay
rates is not fully understood, some of its general features
are now widely accepted. In particular, chaotic maps
exhibit a universal response to perturbations: the decay
rate is governed only by the strength jV2j
2 of the per-
turbation. This is because FD is an indicator of the
relative randomness of the perturbation V in the eigen-
basis of the quantum map U [6]. On the other hand, the
decay rate of the regular system depends on the details of
V, so, in particular, it can be much slower under simple
perturbations. Hence, FD provides a powerful diagnostic
of chaotic behavior, but calculating it is computationally
hard classically. Furthermore, because Fn� � generally
shows large fluctuations over time, it is in practice neces-
sary to average Fn� � over a random set of initial states  
to determine its decay rate, thus increasing the numerical
burden.

Since fully controllable and scalable quantum com-
puters are still quite a ways in the future, algorithms
which can be performed on a less-ambitious quantum
information processor (QIP) are of great interest. A QIP
is a quantum device which may fail to satisfy one or more
of DiVincenzo’s five criteria, but can nonetheless carry
out interesting computations [7]. Of particular interest to
us is deterministic quantum computation with a single bit
(DQC1) [8], a model of quantum information processing
which is believed to be less powerful than universal
quantum computation and which is naturally imple-
mented by a high-temperature NMR QIP [9]. In this
model, universal control over all qubits is still assumed,
but state preparation and readout are limited. The initial
state of the �K 
 1�-qubit register is

�
1� �

1 
 �j0ih0j
�
�

1
; (2)
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FIG. 1. Quantum circuit evaluating the average fidelity Fn� �
between the perturbed and unperturbed maps U and Up � UP.
The gates Rk are %=2 rotation in the Bloch sphere around axis
k � x or y. When k is set to x, we get the real part of
Trf�Un�yUn

pg=N while k � y yields the imaginary part. The
unitary operator P is applied conditionally: when the probe
qubit is in state j1i, the unitary P is applied to the lower register
while no transformation is performed when the state of the
probe qubit is j0i.
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i.e., the first qubit (called the probe qubit for reasons
which will become clear) is in a pseudopure state,
whereas the other K qubits are in the maximally mixed
state. Furthermore, the result of the computation is ob-
tained as the noisy expectation value of �z on the probe
qubit. The variance of �z is determined by (i) the polar-
ization � of Eq. (2) and (ii) the ‘‘inherent noise’’ of the
measuring process. The value of � in high-temperature
NMR is independent of the size of the register because
only a single qubit needs to be in a pseudopure state. The
inherent noise receives contribution from both electronic
noise and statistical fluctuations due to the finite sample
size. Hence, h�zi can be estimated to within arbitrary �
with a probability of error at most p by repeating the
computation O�log�1=p�=�2� times [10].

Efficient gate decompositions for some quantized cha-
otic systems have been known for some time [11] and
have recently been incorporated into efficient quantum
simulations [6,12,13]. In Ref. [12], an efficient quantum
circuit is constructed to evaluate the coarse-grained local
density of states — the average profile of the eigenstates
ofU over the eigenbasis ofUp — which is believed to be a
valid indicator of chaos and is formally related to FD via
Fourier transform [5]. In Ref. [6], an efficient procedure
to estimate the FD using the standard model of quantum
computation is presented. Finally, in Ref. [13], a DQC1
circuit is presented to estimate the form factors tn �
jTrfUngj2 of a unitary map U which, under the random
matrix conjecture (see [14] and references therein), is a
good signature of quantum chaos. The proposed algo-
rithm offers only a quadratic speedup, but since entangle-
ment is very limited in DQC1 [15], this result raises doubt
about the common belief that massive entanglement is
responsible for quantum-computational speedup [16].

Drawing upon this previous work, we will now con-
struct an efficient DQC1 algorithm to evaluate the aver-
age FD associated with any pair of unitary operators U
and Up, provided they can be implemented efficiently,
e.g., as those of Ref. [11]. We begin by proving a crucial
identity required to implement the efficient algorithm.

Let f� � be a complex-valued function on the space
of pure states of a N-dimensional quantum system. We
denote its average by f� � �

R
f� �d , where d is the

uniform measure induced by the Haar measure, such thatR
d � 1. For sake of compactness let h jAj i � hAi .
Theorem: Let A;B;C; . . . be ‘ linear operators on a

N-dimensional Hilbert space. Then

hAi hBi hCi � � � �
Trf�A � B � C � � ��P�‘�

S g

�N
‘�1
‘ �

; (3)

where P�‘�
S is the projector on the symmetric subspace of ‘

systems; see Ref. [17] for details on P�‘�
S .

Proof: First, note that

hAi hBi hCi � � � � Trfj ih j�‘�A � B � C � � ��g:
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Therefore, the average over the pure states  yields

Trfj ih j�‘�A � B � C � � ��g:

Since j ih j�‘ annihilates any state which is antisym-
metric under the interchange of two of the ‘ systems, and
is by construction symmetric under such interchange, it
must be proportional to the projector P�‘�

S onto the sym-
metric subspace. To establish the theorem it is sufficient
to find the proportionality factor � between these two
quantities. Letting A � B � C � � � � � 1, we get 1 �

Trfj ih j�‘g � �TrfP�‘�
S g � ��N
‘�1

‘ � (see Ref. [17]),
which completes the proof. �

A useful corollary to this theorem for any specific ‘
can be obtained by expanding P�‘�

S in Eq. (3). In the case
‘ � 2, it reads

hAi hBi �
X
ijmn

2AijBmn�P
�2�
S �ji;nm

N2 
 N

�
X
ijmn

AijBmn�
ij
mn 
 
in
mj�

N2 
 N

�
TrfAgTrfBg 
 TrfABg

N2 
 N
: (4)

Similar expressions can be derived for ‘ > 2, which
involves the properly normalized sum of all combinations
of traces of products and products of traces.

To arrive at our algorithm, it is sufficient to write the
average fidelity as Fn� � � h�Un�yUn

pi h�U
n
p�

yUni and
apply the identity from Eq. (4) to obtain

Fn� � �
jTrf�Un�yUn

pgj
2 
 N

N2 
 N
: (5)

The specific form of our theorem with ‘ � 2, unitary
A, and B � Ay has been used previously [18,24,25],
but our proof simplifies the presentation. An efficient
DQC1 algorithm to evaluate the trace of any unitary
operator [here, �Un�yUn

p], provided that it admits an
efficient gate decomposition, was presented in Ref. [19].
If the perturbed map takes the form Up � UP for some
177906-2
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unitary operator P (e.g., P � expf�i
Vg as above), the
circuit can be further simplified into the one illustrated
in Fig. 1.

We now analyze the complexity of our algorithm.
We assume that U and Up admit �-accurate gate decom-
positions whose sizes grow as L�K; �� 2 poly�K; 1=��.
This implies that the controlled version of these
gates also scales as L�K; �� [20]. We see from Eq. (5)
that the variance of Fn� � is at most twice the variance
of Trf�Un�yUn

pg=N. Therefore, the overall algorithm —

estimating Fn� � to within �, with error probability at
most p—requires resources growing as L�K; ��n�
log�1=p�=�2, so it is efficient. (The range in n over which
the decay is studied should be independent of the system’s
size.) This algorithm thus provides an exponential
speedup over all known classical procedures and uses a
single bit of quantum information. Furthermore, it elim-
inates any cost of averaging the fidelity over a random set
of initial states, as this averaging is done directly.

In order to implement certain unitary maps onK qubits
efficiently, it is necessary to introduce a number Ka of
ancillary qubits (a ‘‘quantum work pad’’) in the fiducial
state j 0i. Ancillary qubits in pseudopure states can be
used in the DQC1 setting. As a first step of the computa-
tion, part of the polarization of the probe qubit of Eq. (2)
can be transferred to ancillas initially in maximally
mixed states. Thus, as long as the size Ka of the work
pad is at most polylogarithmic in K, the algorithm re-
mains efficient.

Perhaps the most surprising feature of the quantum
algorithm as it is presented in Fig. 1 is that the probe
never gets entangled with the system throughout the
computation. To show this, consider a generalized ver-
sion of the circuit of Fig. 1 where the P’s and the U’s are
free to differ at each iteration, i.e., at step j, we apply Pj
conditionally on the probe qubit, followed by Uj. This
generalization is necessary since the controlled P gate
will in general be decomposed as a sequence of elemen-
tary controlled and regular gates [20]. Initially, the probe
qubit is in state )j0i 
 *j1i. After k steps, the state of
the QIP is

�k �
1

N
fj)j2j0ih0j � 1 
 )*�j0ih1j � Sy


 )�*j1ih0j � S
 j*j2j1ih1j � 1g; (6)

where S � UkPk � � �U2P2U1P1U
y
1U

y
2 � � �U

y
k . Decom-

posing this state in the eigenbasis of the unitary matrix
Sj+ji � eisj j+ji, we get

�k �
1

N

X
j

j)jih)jj � j+jih+jj; (7)

where j)ji � )j0i 
 *eisj j1i; the state is separable. Its
separability supports the point of view that the power of
quantum computing derives not from the special features
177906-3
of quantum states — such as entanglement — but rather
from fundamentally quantum operations [21].

Our algorithm also illustrates the relation between the
decoherence rate and the dynamical properties of the
environment [22]. Consider the probe qubit of Fig. 1 as
a quantum system interacting with a complex environ-
ment consisting of K two-level systems. After a ‘‘time’’
n, the state of the system is given by tracing out the K
environmental qubits from Eq. (6). The diagonal elements
of the reduced density matrix j)j2 and j*j2 are left intact
while the off-diagonal elements )*� and )�* are de-
creased by a factor jTrfSgj which is roughly equal to�������������
Fn� �

q
. Thus, in the presence of a chaotic environment,

the system will unavoidably decohere at a rate governed
solely by the strength of the coupling. On the other hand,
given a simple coupling to a regular environment, the
system can maintain its coherence over a long period of
time. This analogy also provides a very simple example of
decoherence without entanglement [23].

On the circuit of Fig. 1, only the perturbation gates P
are conditioned on the state of the probe qubit. This
suggests a dual interpretation of the algorithm as quan-
tum circuit and quantum probe. On the one hand, U could
be a known unitary transformation which is being simu-
lated on the lower K-qubit register over which we have
universal control. Then, the gate U would simply be
decomposed as a sequence of elementary gates as pre-
scribed in Ref. [11] for example. On the other hand, the
lower register could be a real quantum system undergoing
its natural evolution U which might not even be known.
Then, the probe qubit should really be regarded as a probe
which is initialized in a quantum superposition, used to
conditionally kick the system, and finally measured to
extract information about the system under study. In this
case, it is not necessary to have universal control over the
lower register (the quantum system); we must simply be
able to apply a conditional small unitary transforma-
tion to it.

Finally, Eq. (5) provides a useful numerical tool that
can be used to compute the exact average fidelity instead
of estimating it by averaging over a finite random sample
of initial states. In Ref. [6], FD was illustrated on the
quantum kicked top map UQKT � expf�i%Jy=2g �
expf�ikJ2z=jg acting on the N � 2j
 1 dimensional
Hilbert space of angular momentum operator ~JJ. The
chosen perturbation operator was P �

Q
K
j�1 �

expf�i
�jz=2g, a collective rotation of all K qubits of
the QIP by an angle 
. The decay rate (governed by the
Fermi golden rule in this regime) is jV2j
2 � 2:50
2

for this perturbation [6]. Fn� � was estimated in both
chaotic (k � 12) and regular (k � 1) regimes of the
kicked top by averaging over 50 initial states. We re-
produce these results in Fig. 2 and compare them with
the exact average Eq. (5) and theoretical prediction
e�jV2j
2n. The random sample is in good agreement
177906-3



FIG. 2. Fidelity decay Fn� � averaged over 50 initial compu-
tational basis states for UQKT in a regular regime (k � 1,
squares) and chaotic regime (k � 12, circles). The dashed lines
represent the exact average Eq. (5) and the full line shows the
exponential decay at the Fermi golden rule rate jV2j
2.
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with the exact average except that the former shows
fluctuations. Furthermore, the decay in the chaotic
regime is in excellent agreement with the Fermi
golden rule, while in the regular regime it is considerably
slower.

We have presented an efficient quantum algorithm
which computes the average FD of a quantum map un-
der perturbation using a single bit of quantum informa-
tion. The quantum circuit for this algorithm establishes
a link between decoherence by a chaotic environment
and FD. Using a special case of our theorem, we numeri-
cally evaluated the exact average FD for the quantum
kicked top and found good agreement with previous
estimations using random samples. Although we have
mainly motivated our algorithm for the study of quan-
tum chaos, we believe that it has many other applica-
tions such as characterizing noisy quantum channels
and computing correlation functions for many-body sys-
tems. We have also shown that our algorithm can be
viewed as a special experiment where a quantum probe
is initialized in a superposition and used to condi-
tionally kick the system under study. This type of quan-
tum information science by-product might open the
horizon to new types of experimental measurements
where a small QIP is used to extract information from
the quantum system under study. Finally, the effective
speedup despite the limited presence of entanglement —
in particular the complete absence of entanglement
between the quantum probe and the mixed register —
is a step forward in our understanding of quantum-
computational speedup.
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