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Tripartite Quantum State Sharing
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We demonstrate a multipartite protocol to securely distribute and reconstruct a quantum state. A
secret quantum state is encoded into a tripartite entangled state and distributed to three players. By
collaborating, any two of the three players can reconstruct the state, while individual players obtain
nothing. We characterize this �2; 3� threshold quantum state sharing scheme in terms of fidelity, signal
transfer, and reconstruction noise. We demonstrate a fidelity averaged over all reconstruction permu-
tations of 0:73� 0:04, a level achievable only using quantum resources.
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FIG. 1 (color online). Schematic of the �2; 3� quantum state
sharing scheme.  in, secret quantum state; OPA, optical para-
metric amplifier; G, electronic gain; AM, amplitude modula-
tor; LO, optical local oscillator; x:y, beam splitter with
an access structure to reconstruct the state. The state reflectivity x=�x� y� and transmitivity y=�x� y�.
Secret sharing [1] is a powerful technique in computer
science which enables secure and robust communication
in information networks, such as the internet, telecom-
munication systems, and distributed computers. The se-
curity of these networks can be enhanced using quantum
resources to protect the information. Such schemes have
been termed quantum secret sharing [2]. Many applica-
tions in quantum information science, however, require
the distribution of quantum states. One such example is
quantum information networks, which are expected to
consist of nodes where quantum states are created, pro-
cessed, and stored, connected by quantum channels [3]. It
is of paramount importance that the quantum channels in
these networks allow the robust and secure distribution of
quantum states between nodes. Cleve et al. [4] proposed
the secret sharing of quantum states as a protocol to
provide these capabilities: overcoming failures or con-
spiracies by nodes. We term this quantum state sharing to
differentiate from the quantum secret sharing of classical
information. In �k; n� threshold quantum state sharing [4],
the ‘‘dealer’’ node encodes a secret state into an n-party
entangled state and distributes it to n ‘‘player’’ nodes.
Any k players (the access structure) can collaborate to
retrieve the quantum state, whereas the remaining n-k
players (the adversary structure), even when conspiring,
acquire nothing. This scheme provides quantum informa-
tion networks with a secure framework for distributed
quantum computation and quantum communication.

The original quantum state sharing scheme by Cleve
et al. was formulated for discrete states and requires the
control and coupling of qudits (d-dimensional extensions
of qubits), which is extremely, experimentally challeng-
ing. In the continuous variable regime, however, quantum
state sharing is feasible utilizing Einstein-Podolsky-
Rosen (EPR) entanglement [5], an experimentally acces-
sible quantum resource [6,7]. We demonstrate �2; 3�
threshold quantum state sharing in this regime. In our
scheme, a secret coherent state is encoded into a tripartite
entangled state and distributed to three players. We
demonstrate that any two of the three players can form
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reconstruction is characterized in terms of fidelity, signal
transfer, and reconstruction noise. These measures show a
direct verification of our tripartite continuous variable
entanglement. As coherent states form an over-complete
basis for all quantum states, arbitrary states can be shared
by this scheme.

The quantum states of interest in this Letter reside at
the frequency sidebands of an electromagnetic field. In the
Heisenberg picture of quantum mechanics, a quantum
state can be represented by the field annihilation operator
âa � �X̂X� � iX̂X��=2, where X̂X��hX̂X�i�
X̂X� are the am-
plitude (�) and phase (�) quadratures, with variances of
V� � h�
X̂X��2i. In our dealer protocol, the dealer inter-
feres the secret state âain with one of a pair of EPR en-
tangled beams âaEPR1 on a 1:1 beam splitter (Fig. 1). The
two output fields and the second entangled beam âaEPR2
form the three shares which are distributed to the players.
The entangled state ensures that the secret is pro-
tected from each player individually and is generated
by interfering a pair of amplitude squeezed beams, âasqz1
and âasqz2 [7]. The dealer can further enhance the security
of the scheme by displacing the coherent amplitudes of
the shares with correlated Gaussian white noise [8].
Choosing the Gaussian noise to have the same correla-
tions as the quadrature entanglement, the shares can be
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expressed as

âa 1 � �âain � âaEPR1 � 
N �=
���
2

p
; (1)

âa 2 � �âain � âaEPR1 � 
N �=
���
2

p
; (2)

âa 3 � âaEPR2 � 
N 
; (3)

where 
N � �
N� � i
N��=2 represents the Gaussian
noise with mean h
N�i � 0 and variance h�
N��2i �
VN, and 
 denotes the complex conjugate.

The reconstruction protocol used for the �2; 3� quan-
tum state sharing scheme is dependent on the correspond-
ing access structure (Fig. 1). The access structure formed
when players one and two collaborate, henceforth denoted
f1; 2g, reconstructs the secret quantum state by complet-
ing a Mach-Zehnder interferometer using a 1:1 beam
splitter [5]. The access structures f2; 3g and f1; 3g recon-
struct the quantum state by utilizing a 2:1 beam splitter
and an electro-optic feedforward loop [8]. In the latter
protocol, combining the shares on the beam splitter with
appropriate relative phase reconstructs the phase quadra-
ture of the secret state on one of the beam splitter outputs.
In contrast, the amplitude quadrature has additional noise
as a result of this process. This noise, however, is corre-
lated with the amplitude quadrature of the other beam
splitter output, which is detected. The resulting photo-
current is fedforward to displace the amplitude quadra-
ture of the first output. Assuming no losses, the
quadratures of the reconstructed secret can then be ex-
pressed as [8]
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(4)


X̂X�
out �

1���
3

p �
X̂X�
in � 
X̂X�

sqz1 � 
X̂X�
sqz2�; (5)

where g� � hX̂X�
outi=hX̂X

�
ini are the optical quadrature gains.

The phase quadrature gain g� � 1=
���
3

p
is set by the 2:1

beam splitter, while the amplitude quadrature gain g� �
�1=

���
3

p
�G=

���
6

p
� has an additional term, which is a

function of the electronic feedforward gain G. We refer
to the specific gain of g�g� � 1 as the unitary gain
point. At unitary gain and in the limit of perfect squeez-
ing, the quadratures of the reconstructed state are given
by 
X̂X�

out � �
���
3

p
��1
X̂X�

in . This state is directly related to
the secret state via a local unitary parametric operation.
Although not in the same form as the secret state, such a
reconstructed state is achievable only by using entangle-
ment. On the other hand, the unitary parametric operation
is local and requires no entanglement. Therefore, the
essence of the reconstruction protocol is contained within
the feedforward scheme.

In our experiment we use a Nd:YAG laser producing a
coherent field at 1064 nm to provide a shared time frame
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between all parties, to yield the dealer secret state pro-
duced by displacing the sideband vacuum state of the
laser field using an amplitude and a phase modulator at
6.12 MHz, and to produce two amplitude squeezed states
generated in hemilithic MgO:LiNbO3 optical parametric
amplifiers pumped with 532 nm light. The output fields of
each optical parametric amplifier are squeezed 4:5�
0:2 dB below the quantum noise limit. These squeezed
beams are interfered on a 1:1 beam splitter with an
observed visibility of 99:1%� 0:2%. The beam split-
ter outputs are EPR entangled and satisfy the wave-
function inseparability criterion h�
X̂X�

EPR1 � 
X̂X�
EPR2�

2i 

h�
X̂X�

EPR1 � 
X̂X�
EPR2�

2i=4 � 0:44� 0:02< 1 [7,9]. To en-
hance the security of the secret state against the adversa-
ries, the coherent quadrature amplitudes of the entangled
beams are displaced with Gaussian noise of variance
VN � 3:5� 0:1 dB. Experimentally, this noise can be
actively applied using electro-optic modulation tech-
niques, but in our case it appears naturally as a result of
decoherence [10]. A single homodyne detector is used to
characterize the secret, adversary, and reconstructed
quantum states. To ensure accurate results, the total ho-
modyne detection efficiency, �hom � 0:89� 0:01, is in-
ferred out of each measurement.

We characterize the quality of the state reconstruction
for the access and adversary structures using fidelity F �
h inj�outj ini, which measures the overlap between the
secret and reconstructed quantum states [11]. Assuming
that all fields involved have Gaussian statistics and that
the secret is a coherent state, the fidelity can be expressed
in terms of experimentally measurable parameters as

F � 2e��k��k��=4=
�����������������������������������������
�1� V�

out��1� V�
out�

q
; (6)

where k� � hX�
in i

2�1� g��2=�1� V�
out�. In our experi-

ment, the fidelity for f1; 2g can be determined directly;
however, for f2; 3g and f1; 3g, a unitary parametric trans-
formation must be applied before a meaningful fidelity is
obtained. This unitary transform can be applied either
optically or a posteriori. The final state is then 
X̂X�

para �
�

���
3

p
��1
X̂X�

out, so in the ideal case 
X̂X�
para � 
X̂X�

in . Under
ideal conditions and at unitary gain, any one of the access
structures can achieve F � 1 corresponding to perfect
reconstruction of the secret quantum state, while the
corresponding adversary structure obtains F � 0.

When no entanglement is used, the maximum fidelity
achievable by f2; 3g and f1; 3g is F clas

f2;3g � F clas
f1;3g � 1=2,

while f1; 2g can still achieve F clas
f1;2g � 1, so the average

fidelity achieved by all permutations of the access struc-
ture cannot exceed F clas

avg � 2=3. This defines the classical
boundary for �2; 3� threshold quantum state sharing. Note
that for general �k; n� threshold quantum state sharing of a
coherent state, independent of the dealer protocol, the
maximum average fidelity achievable without entangle-
ment resources is F clas

avg � k=n.
With the f1; 3g and f2; 3g protocols being equivalent,

our �2; 3� threshold quantum state sharing scheme is
177903-2
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demonstrated through the implementations of the f1; 2g
and f2; 3g reconstruction protocols. Figure 2 shows the
noise spectra and corresponding inferred Wigner func-
tion standard deviation contours for the secret and recon-
structed state for the f1; 2g protocol. The fidelity obtained
from these noise spectra is F f1;2g � 0:93� 0:03 with
g��0:94�0:01 and g� � 0:97� 0:01. The correspond-
ing adversary structure f3g gets a fidelity of F f3g � 0
since the share contains no component of the secret state.
Figure 2(d) shows several measured fidelity points as a
function of phase space distance, r, between the coherent
amplitudes of the secret and reconstructed states. Each
fidelity point has a nonzero distance due to mode mis-
match, optical losses, and imperfect phase locking.

Similarly, Fig. 3 shows an example of the secret and
reconstructed state for the f2; 3g protocol. In this case,
to allow a direct comparison between the secret and
reconstructed states, the inferred Wigner function stan-
dard deviation contour of the reconstructed state after the
a posteriori local unitary parametric operation is also
shown. Figure 4 shows the measured fidelity for a range
gains. Around the unitary gain point, we achieve a fidel-
ity of F f2;3g �0:63�0:02 with g�g� � 1:02� 0:03. The
corresponding adversary structure f1g achieves a fidelity
of only F f1g � 0:03� 0:01. The quantum nature of our
protocol is demonstrated by the fidelity averaged over all
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FIG. 2 (color online). Experimental results for the f1; 2g
access structure. (a) and (b) show the spectra of the amplitude
and phase quadrature variances for the secret (input, blue/dark
grey) and reconstructed (output, green/light grey) quantum
states. ,f is the offset from the signal frequency at
6.12 MHz. Resolution bandwidth � 1 kHz and video band-
width � 30 Hz. (c) Standard deviation contours of Wigner
functions of the secret (blue/dark grey) and reconstructed
(green/light grey) quantum states. (d) Measured fidelity as a
function of gain deviation r2 � �hX̂X�

outi � hX̂X�
ini�

2 � �hX̂X�
outi �

hX̂X�
ini�

2. (d) Grey area highlights the accessible fidelity region.
Points plotted are from six different experimental runs.
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the access structures F avg � 0:74� 0:04, which exceeds
the classical limit F clas

avg � 2=3.
Fidelity is a single state dependent measure of the

efficacy of quantum information protocols. Alterna-
tively, complementary information can be obtained by
measuring the signal transfer to �T �, and the additional
noise on �V �, the reconstructed state [12]. Such analysis
has been used to characterize quantum nondemolition
[13] and quantum teleportation experiments [14].
Unlike the fidelity measure, both T and V are invariant
to unitary transformations of the reconstructed state.
Therefore, for the T and V analysis, an a posteriori
unitary transform is not required. The signal transfer is
given by T � T� � T�, where T� � SNR�

out=SNR
�
in

are the quadrature signal transfer coefficients with
SNR� being the standard signal-to-noise ratios. The addi-
tional noise is given by V � V�

cvV
�
cv, where V�

cv � V�
in �

jh
X̂X�
in
X̂X

�
outij

2=V�
out are the conditional variances. Experi-

mentally, the signal-to-noise ratios that define T can be
obtained from our measured noise spectra (Figs. 2 and 3 ),
while V�

cv can be determined from the output quadrature
variance and the optical quadrature gains V�

cv � V�
out �

�g��2. In the ideal case, any one of the access structures
can achieve perfect state reconstruction with T � 2 and
V � 0, while the corresponding adversary structure ob-
tains no information with T �0 and V �1.

Figure 5 (inset) shows the experimental T and V
points for the f1; 2g protocol. We measure a best
state reconstruction of T f1;2g � 1:77� 0:05 and
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FIG. 3 (color online). Experimental results for the f2; 3g
access structure. (a) and (b) show the spectra of the amplitude
and phase quadrature variances for the secret (input, blue/dark
grey) and reconstructed (output, green/light grey) quantum
states. (c) Standard deviation contours of Wigner functions of
the secret (blue/dark grey) and reconstructed (green/light grey)
quantum states. The dashed circle represents the quantum state
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3

p
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X̂X�

out after the a posteriori local unitary para-
metric operation.
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cal region for the f2; 3g access structure. Inset: experimental T
and V for the f1; 2g access structure (green/light grey circles)
and the theoretical point (black circles).
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access structure as a function of the product of g�g�. Dashed
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V f1;2g � 0:01� 0:01. Both of these values are close to
optimal, being degraded only by optical losses and ex-
perimental inefficiencies. Similarly, Fig. 5 shows the
points for the f2; 3g protocol for a range of gains together
with the corresponding adversary structure f1g. The ma-
jority of the experimental points are in agreement with
the theoretical prediction, with the discrepancies account-
able for by drifts in our control system. The accessible
region for the f2; 3g protocol without entanglement is
illustrated by the shaded region. The quantum nature of
the state reconstruction is demonstrated by the experi-
mental points which exceed this classical region. For the
f2; 3g protocol we measure a lowest reconstruction noise
of V f2;3g � 0:46� 0:08 and a largest signal transfer of
T f2;3g � 1:03� 0:05. Points with T > 1 exceed the in-
formation cloning limit [14] and demonstrate that the
f2; 3g protocol has better access to information encoded
on the secret state than any other parties. The adversary
structure obtains a mean T f1g � 0:41� 0:01 and V f1g �
3:70� 0:08. The separation of the adversary structure T
and V points from that of the f2; 3g protocol in Fig. 5
illustrates that in such a protocol the access structure
performs far better than any adversary structure.

Our experimental demonstration of �2; 3� threshold
quantum state sharing is the first application of continu-
ous variable tripartite entanglement. Furthermore, it is
extendable to an arbitrary �k; n� scheme, without a corre-
sponding scaleup of the required quantum resources [15].
The implementation of quantum state sharing broadens
the scope of quantum information networks allowing
quantum communication between multiple nodes, while
providing security against malicious parties in the net-
work as well as node and channel failures.
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