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Optimal implementation of quantum gates is crucial for designing a quantum computer. We consider
the matrix representation of an arbitrary multiqubit gate. By ordering the basis vectors using the Gray
code, we construct the quantum circuit which is optimal in the sense of fully controlled single-qubit
gates and yet is equivalent with the multiqubit gate. In the second step of the optimization, superfluous
control bits are eliminated, which eventually results in a smaller total number of the elementary gates.
In our scheme the number of controlled NOT gates is O�4n� which coincides with the theoretical lower
bound.
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2 -dimensional subspace consists of those basis vectors
for which the values of the controlled qubits match with

find that only a small fraction of the control bits appears
to be essential for the final result of the decomposition.
Since the early proposal of a quantum-mechanical
computer [1], quantum superposition and entanglement
has been discovered to be potentially useful for comput-
ing. For example, Shor’s integer factorization [2] and
Grover’s database search [3] show considerable speedup
compared to the known classical algorithms. Moreover,
the framework of quantum computing can be used to de-
scribe intriguing entanglement-related phenomena, such
as quantum teleportation and quantum cryptography.

Quantum circuits [4] provide a method to implement
an arbitrary quantum algorithm. The building blocks of
quantum circuits are quantum gates, i.e., unitary trans-
formations acting on a set of qubits. It has previously been
shown that a general quantum gate can be simulated ex-
actly [5–7] or approximately [8,9] using a quantum circuit
built of elementary gates which operate only on one and
two qubits. Some individual gates operating on n qubits,
such as the quantum Fourier transform, reduce to a poly-
nomial number of elementary gates in n. Unfortunately,
this is not the case for an arbitrary n-qubit gate, i.e., a
unitary operation having 4n degrees of freedom. From the
practical point of view, the maximum coherent operation
time of the quantum computer is limited by undesirable
interactions with the environment, i.e., decoherence. On
the other hand, the number of the elementary gates in-
volved in the decomposition governs the execution time
of the quantum algorithm. Hence the complexity of these
quantum-circuit constructions is of great interest.

The conventional approach of reducing an arbitrary
n-qubit gate into elementary gates is given in Ref. [5]
and studied with the help of examples in Refs. [10,11].
The main idea is to decompose the unitary matrix U,
which represents the quantum gate, into two-level ma-
trices and to find a sequence of Cn�1V and Cn�1NOT

gates which implements each of them. Here we refer
with CkV to the one-qubit gate V having k control bits.
The control bits, each of which has the value zero or one,
specify the subspace in which the gate V operates. This
n�k
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those of the control bits. In this approach, a number of
Cn�1NOT gates is required to change the computational
basis, such that the two-level matrix under consideration
represents the desired Cn�1V gate.

For the purpose of their physical implementation, all
the Cn�1V gates can be further decomposed into a se-
quence of elementary gates, for instance, using the quan-
tum circuit of Ref. [5]. For the simulation of a Cn�1NOT or
Cn�1V gate, a quantum circuit of O�n2� elementary gates
is required while Cn�1W requires only O�n� gates, pro-
vided that W is unimodular. In Ref. [5], it was considered
that since O�n� Cn�1NOT gates are needed between each
of the O�4n� Cn�1V gates, the total circuit complexity
is O�n34n�. It has recently been shown with the help of
palindromic optimization [12], that the number of
Cn�1NOT gates required in the simulation can be reduced
to O�4n� which results in circuit complexity O�n24n�. A
constructive upper bound for the optimal circuit complex-
ity has been reported [9] to be O�n4n� [13] which may
also be achieved by combining the previous results [5,12]
with the fact that Cn�1NOT gates may be replaced with
proper controlled NOT (CNOT) gates upon changing the
computational basis [11]. The theoretical lower bound [14]
for the number of CNOT gates needed to simulate an
arbitrary quantum gate is d�4n � 3n� 1�=4e. However,
no circuit construction yielding a complexity less than
O�n4n� has been reported, nor could be trivially com-
bined from the previous results.

In this Letter, we show how to construct a quantum
circuit equivalent to an arbitrary n-qubit gate. The circuit
obtained has complexity O�4n� which scales according to
the predicted theoretical lower bound. The scheme uti-
lizes the reordering of the basis vectors, i.e., instead of
labeling the basis vectors through the binary coding, we
rather employ Gray codes [15]. The special property of
any Gray code basis (GCB) is that only 1 bit changes
between the adjacent basis vectors. Hence no Cn�1NOT

gates are needed in the decomposition. Furthermore, we
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FIG. 1. (a) Illustration of the Gray code c4i . White squares
stand for bit values 0 and black squares denote 1. The function
��i� represents the value of the bit string c4i plus one. (b) Table
of dimensions 24 � 24 shows the number of control bits used
while nullifying the elements of the matrix U. The width of the
line Ls represents the number p � 3� s of control bits required
to zero the element below the line with the element above it.
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Finally, the further elimination of futile control bits re-
duces the circuit complexity from O�n4n� down to O�4n�.

The physical state of an n-qubit quantum register can
be represented with a vector j�i in the associated Hilbert
space CN , where N � 2n. In a given basis fjekig, a quan-
tum gate acting on a n-qubit register corresponds to a
certain 2n � 2n unitary matrix U. The QR-factorization
of any matrix can be performed using the Givens rotation
matrices [16]. A Givens rotation iGj;k is a two-level ma-
trix which operates nontrivially only on two basis vectors,
jeji and jeki. We define iGj;k � Gj;k�A� to be a generic
rotation matrix which selectively nullifies the element on
the ith column and the jth row with the help of the
element on the ith column and the kth row of a matrix
A. The nontrivial elements of the two-level matrix
iGj;k � figl;ng

N
l;n�1 acting on the matrix A � fal;ng

N
l;n�1

are given by

i�j;k :�

 
igk;k

igk;j
igj;k

igj;j

!
�

1������������������������������
jaj;ij

2 � jak;ij
2

q
 

ak;i aj;i
�aj;i ak;i

!
;

while the other elements match with the identity matrix.
In the special case where the element aj;i vanishes, the
Givens rotation is defined to be an identity matrix.

For example, the first Givens rotation we employ re-
sults in

1GN;N�1U �

0
BBBBBBBB@

u1;1 u1;2 . . . u1;N

..

. ..
. . .

. ..
.

uN�2;1 uN�2;2 . . . uN�2;N

~uuN�1;1 ~uuN�1;2 . . . ~uuN�1;N

0 ~uuN;2 . . . ~uuN;N

1
CCCCCCCCA
;

where the modified elements of U due to 1GN;N�1 are
indicated with the tilde. Applying 1GN�1;N�2 to the modi-
fied matrix we can nullify the element ~uuN�1;1 and simi-
larly the whole first column, except the diagonal element.
The definition of the Givens rotation ensures that the
argument of the diagonal element vanishes and the uni-
tarity of the matrix U fixes its absolute value to unity. The
process is continued through the columns 2 to N � 1,
resulting in an identity matrix, except for the diagonal
element on the Nth row which becomes det�U�. In fact,
without loss of generality we may assume that U 2
SU�2n�, since the nonzero argument of the determinant
of U contributes only to the global phase of the state
vector j�i which is not measurable. Thus we obtain the
factorization  Y2n�1

i�1

Y2n
j�i�1

2n�iGj;j�1

!
U � I; (1)

where the order of the products is taken from left to right,
i.e., the first element 2n�1G2n;2n�1 is the leftmost matrix in
the product. The assumption of the unimodularity of the
matrix U may be dropped if one first applies a matrix
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e�i arg�det�U��=NI which may be realized with a single one-
qubit gate.

For quantum computation, it is convenient to choose
the basis vectors according to jeki � �ijxki i, where xki 2
f0; 1g and the index i � 1; . . . ; n refers to the physical
qubit i. Here we note that the order of the basis vectors
in the computational basis is not fixed. In the previous
approaches [5,12], the order of the basis vectors has been
chosen such that the values xki essentially form the binary
representation of the number k� 1, i.e., k � 1�P

n
i�0 2

ixki . However, the coefficients xki can just as well
be chosen to form a Gray code [15] corresponding to the
number k� 1. A Gray code of n qubits fcn1 ; c

n
2 ; . . . ; c

n
2ng is a

palindromelike ordering of binary numbers having the
special property that the adjacent elements cni and cni�1
differ only in 1 bit from each other. We choose to use such
a Gray code in which each bit string cni � bin � � � b

i
2b

i
1 is

obtained from the binary representation ib of the number
i as cni � ibXOR�ib=2�. Furthermore, we define a function
��i� to represent the value of the bit string cni plus one, i.e.,
��i� � 1�

P
n
l�1 b

n
l 2

l. An example of the Gray code and
the function � for the case n � 4 is presented in Fig. 1(a).

The advantage of using the GCB instead of the binary
code basis (BCB) is that a unitary two-level matrix
operating on adjacent basis vectors equals the matrix
representation of some Cn�1V gate. Consequently, each
of the 2n�1�2n � 1� Givens rotations iGj;j�1 can be im-
plemented using only one fully controlled single-qubit
gate Cn�1V and no Cn�1NOT gates are needed, unlike in
previous schemes [5,12].

Let us denote the permutation matrix accomplishing
the transformation of basis from the GCB to the BCB by
�. Since the conventional basis for the matrix represen-
tations is the BCB we rewrite Eq. (1) in the BCB as
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 Y2n�1

i�1

Y2n
j�i�1

� �2
n�iGGCB

j;j�1��
y

!
UBCB � I: (2)

Since the matrix � is just a permutation of the basis
vectors defined by the function �, Eq. (2) yields

 Y2n�1

i�1

Y2n
j�i�1

��2n�i�GBCB
��j�;��j�1�

!
UBCB � I: (3)

It is seen from Eq. (3) that every Givens rotation
��i�GBCB

��j�;��j�1� acts nontrivially only on the basis vectors,
je��j�i and je��j�1�i, for which the binary representations
differ only in 1 bit. It is also noted that the column order
of the diagonalization process is changed according to the
function �, which was not utilized in Ref. [12], in which a
fixed column order was assumed in the palindromic
optimization. The decomposition of an arbitrary matrix
U in terms of fully controlled single-qubit gates may now
be constructed straightforwardly according to Eq. (3). It
also determines the numerical values of the generic
Givens rotation matrices. The quantum circuit for an
arbitrary three-qubit gate is shown in Fig. 2, where we
have assumed that all the matrices are given in the BCB.
Since i�j;k 2 SU�2�, the gates Cn�1�i�j;k� decompose into
O�n� elementary gates. Thus the gate complexity of this
construction is O�n4n� which already realizes the former
upper bound by Knill [9].

Let the unitary matrix U be given in the GCB as well
as the generic Givens rotation matrices iGj;k, which may
be realized with a Cn�1�i�j;k� gate. Since only matrices
with consecutive indices are needed in the diagonaliza-
tion procedure, we simplify the notation into iGj :�
iGj;j�1 and i�j :�

i�j;j�1. If s control bits are removed
from a Cn�1�i�j� gate, the matrix representation iGs

j of
such an operation is no more two-level, but rather
2s�1-level, i.e., the matrix iGs

j operates with the matrix
i�j to all pairs of basis vectors which satisfy the remain-
ing control conditions and differ in the same bit bimj

as the
bit strings cnj and cnj�1. Note that the structure of the Gray
code assures that the bit strings cnj and cnj�1 differ in no
other bits, except the bit number mj. Our aim is to
diagonalize the matrix U by p times controlled single-
qubit gates Cp�i�j� in the above given order using the
minimum number of control bits. Once some element
becomes zero in the diagonalization process, we must
use control bits in such a way that it does not mix with
the nonzero elements.
FIG. 2. Quantum circuit equivalent to an arbitrary three-qubit qu
a black square on the upper right hand side corner are superflu
decomposition, while the generic nature of the Ck�i�j;k� gates assu
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Let us consider, for example, the diagonalization of an
arbitrary four-qubit gate, for which the Gray code is
shown in Fig. 1(a). When we are about to perform the
first rotation 1G16, we may discard all the control bits
from C3�1�16� and the matrix representation of 1G3

16 be-
comes 2� 2-block diagonal. In the implementation of
1Gs

15, we must control the bit number 1, since otherwise
the matrix 1�15 would operate on elements in the rows 13
and 16 which is forbidden since the nonzero element on
row 13 would mix with the annihilated element on row
16. In the next step, where we zero the element on row and
column �14; 1�, we may again discard all of the control
bits, since both elements in the pair f�15; 1�; �16; 1�g are
zero and unaffected by the action of the matrix 1�14,
while all the other pairs are nonzero and thus allowed
to mix with each other. Actually, while adjusting the
element in position �j; 1� to zero, we do not have to use
upper controls, i.e., no control bits with number greater
than mj are needed.When working on the second column,
we may remove all the upper controls with the restriction
that at least one of the control bits must have the value 1,
since the only nonzero element in the first column at
position �1; 1� is not allowed to mix with any other
element. To support the determination of the control bits
required, we produced Fig. 1(b) which shows the number
p of control bits needed for each Cp�i�j� gate in the whole
diagonalization process of the matrix U 2 SU�24�.

Let us assume that we are diagonalizing an arbitrary
matrix U 2 SU�N� and aim to annihilate the element
in position �j; i�. Provided that j > 2n�1 and i � 2n�1,
all the upper controls may be dropped except that if
i� 1 � 2mj�1, the bit n with value 1 is also controlled.
The number of the control bits becomes Ci

mj
� mj � 1�

��i� 1� 2mj�1�, where the function ��x� � 1 for x � 0
and ��x� � 0 for x < 0. Let us denote by g0n�k� the
number of CkV gates needed while nullifying the bottom
left-hand-side quarter of the matrixU and similarly gn�k�
for the whole diagonalization process. Since the bit m
differs in the two consecutive bit strings cnj and cnj�1 in
total qm � max�2n�m�1; 1� times on rows 2n � j < 2n�1,
we obtain

g0n�k� �
Xn
m�1

X2n�1

i�1

qim!Ci
m;k

� max�2n�2; 2k� ���k� 1��22n�k�2 � 2n�2�; (4)

where ! is the Kronecker delta.
antum gate up to a global phase. The control bits indicated with
ous and may be omitted to decrease the complexity of the
res that the result remains invariant.
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TABLE I. Number of CNOT gates and the total number of single-qubit and CNOT gates
needed for the implementation of an arbitrary n-qubit gate in the scheme described.

n 1 2 3 4 5 6 7 8 9

CNOT 0 4 64 536 4156 22 618 108 760 486 052 2 078 668
Total 1 14 136 980 7384 42 390 208 820 944 280 4 062 520
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The number of CkV gates needed in the diagonalization
process of the top left-hand-side quarter of the matrix U
is gn�1�k�, while gn�1�k� 1� gates are needed for the
bottom right-hand-side quarter. This yields a recursion
relation gn�k� � g0n�k� � gn�1�k� � gn�1�k� 1� with the
conditions gm�0� � 2m�1 and gm�m� � 0 for all m 2
f1; 2; . . . ; ng. We rewrite the recursion relation as

gn�n� i� � 2i�1 �
Xn

m�i�1

�g0m�m� i� � gm�1�m� i��:

(5)

For i � 1 the terms gm�1�m� 1� vanish and the summa-
tion may be carried out with the help of Eq. (4) yielding
gn�n� 1� � 3� 2n�1 � 2. The general solution of Eq. (5)
contains summations and combinatorial factors. Thus, it
is more convenient to give a simple upper bound

gn�n� i� � 2n�i: (6)

Equation (6) is satisfied when i � 1 and it follows by
induction using Eq. (5) that the upper bound holds for
all i 2 f1; 2; . . . ; n� 1g.

To calculate the number of elementary gates, we use
the decompositions described in Ref. [5]. Table I shows
the number of elementary gates calculated with the ex-
act solution of Eq. (5). For large n, the leading contri-
bution to the number of CNOT gates is approximately
8:7� 4n, while the upper bound from Eq. (6) yields
approximately 11� 4n.

In conclusion, we have presented a construction which
provides an efficient way to implement arbitrary quantum
gates. The initial circuit is optimal in the sense that no
Cn�1NOT gates are needed to permute the basis vectors.
Because of the structure of the gate sequence, we are
entitled to eliminate a considerably large fraction of the
control bits, which results in a circuit of complexity
O�4n�. We note that neither one of the two techniques
alone, the GCB presentation nor the elimination of the
control bits do not suffice to decrease the circuit complex-
ity from O�n4n� to O�4n�.

For certain physical realizations, the implementa-
tion of the Cn�1V gate is, in principle, straightforward
and no decomposition into elementary gates is needed
[17]. To further optimize the design, one could consider
the possibility of utilizing some tailored multiqubit gates
177902-4
[18,19], instead of a set of elementary gates or to use
another decomposition for the matrix U than the one into
Givens rotations.
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