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Ordering and Excitations in the Field-Induced Magnetic Phase of Cs3Cr2Br9
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Field-induced magnetic order has been investigated in detail in the interacting spin 3=2 dimer system
Cs3Cr2Br9. Elastic and inelastic neutron scattering measurements were performed up to H � 6 T, well
above the critical field Hc1 � 1:5 T. The ordering displays incommensurabilities and a large hysteresis
before a commensurate structure is reached. This structure is fully determined. Surprisingly, the lowest
excitation branch never closes. Above Hc1, the gap increases slowly with the field. An analysis in terms
of projected pseudospins is given.
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FIG. 1. Transverse spin order of the Cr3� ions in the commen-
surate ���� magnetic phase of Cs3Cr2Br9 for H k a� b.
in the (a;b) plane as shown in Fig. 1. This leads to k is the propagation vector of the magnetic order.
In recent years, a great deal of work has been devoted
to isotropic quantum spin systems which show a gap in
their energy spectrum. This includes a large variety of
different models such as Haldane and alternating chains,
ladders, as well as spin-dimer systems. In a zero magnetic
field, these systems are all characterized by an S � 0
singlet ground state (j0i) and the energy gap EG of the
lowest magnetic excitation corresponds to an S � 1 state
(j1i). In a field H, when the gap closes at H � Hc1
(g	BHc1 � EG) a three-dimensional magnetic ordering
develops, induced by the small interchain and/or inter-
dimer couplings. In these field-induced magnetic order-
ings (FIMO) only the spin components transverse to the
applied field spontaneously break symmetry. Moreover,
as initially proposed for Haldane chains, a FIMO tran-
sition is an experimental realization of a Bose-Einstein
condensation (BEC) of the hard-sphere bosons, the mag-
nons, into the ground state [1]. Recently, the magnetic
behavior observed in the s � 1

2 spin-dimer compound
TlCuCl3 has been analyzed within this framework [2,3].
While for BEC a gapless Goldstone mode is present in the
energy spectrum of the condensed phase, in the case of a
FIMO, the mode is gapless only if there is conservation of
the component of the total spin in the field direction. If
this symmetry is broken, the total number of the magnons
is no longer conserved. A gap may then be seen in the
lowest excitation branch. It is important to understand the
way an anisotropy creates such a gap in a FIMO phase. In
this Letter we present a complementary elastic and in-
elastic neutron investigation of the FIMO phase in the
spin-dimer system Cs3Cr2Br9. This material differs from
TlCuCl3 and similar compounds [4] in two significant
respects. The larger spin value of Cr3�, s � 3=2 favors
the presence of local anisotropies. The crystal structure is
different: the spin dimers form a hexagonal arrangement
0031-9007=04=92(17)=177202(4)$22.50 
frustration, which should strongly affect any magnetic
order. These two points, i.e., the role of a small anisotropy
and the effects of frustration in a FIMO, are demon-
strated here experimentally. An analysis in terms of pro-
jected pseudospins is proposed to discuss the striking
features in the magnetic phase.

The spin-excitation spectrum of Cs3Cr2Br9 in a zero
field was determined across the whole Brillouin zone by
Leuenberger et al. [5]. The intra- and interdimer exchange
couplings are all antiferromagnetic (AFM). In a field,
Zeeman splitting was also observed, but only for small
fields, H � Hc1 [6]. Neither the field-induced magnetic
structure nor the field dependence of the spin excitations
has been studied above Hc1. Here, we investigate this
FIMO phase in detail. Our experimental configuration
is the same as in Ref. [6]: the external field H is applied
2004 The American Physical Society 177202-1
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within the (a;b) plane along the a� b axis (hereafter
defined as the Z axis) so that the XY plane where the
AFM ordered moments are expected to lie (transverse
ordering) is defined by the c (hereafter X) and the a� b
(Y) axes (Fig. 1). Cs3Cr2Br9 crystallizes in the hexagonal
P63=mmc structure, with a � b � 7:508 �A, c � 18:70 �A
(which is twice the distance between successive planes),
and consists of four Bravais sublattices. The s � 3=2 Cr3�

dimers lie parallel to the c axis [8].
First, we present the elastic results. They were

performed on the lifting-arm two-axis diffractome-
ter D23 CEA-CRG at the Institut Laue-Langevin
(ILL) in Grenoble, France. A single crystal (�350 mm3)
of Cs3Cr2Br9 was placed in a 6 T vertical cryomagnet
equipped with a dilution insert. The wavelength was � �
1:28 �A and the temperature was maintained in the range
50–100 mK. In a zero field, 113 nuclear reflections were
collected, which could be reduced to 68 independent
measurements. The structural refinement was achieved
with type II Becker-Coppens Gaussian extinction correc-
tion and isotropic thermal factors. Aweighted R factor of
1.7% on the nuclear structure factors FN was obtained by
refining 12 parameters. The magnetic structure was then
determined at H � 6 T. It is described by the commen-
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FIG. 2. (a) Field dependence of the propagation wave-vector
component k ( � kX � kY) and (b) that of the parallel (MZ)
and the ordered transverse (MX) magnetizations. QoH;K is the
wave vector corresponding to the minima of the dispersions
(see Fig. 3 and text). In (b) the solid lines are theoretical
predictions obtained for the commensurate ���� magnetic
order (see text).
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surate propagation wave vector k � 	1=4; 1=4; 0
 [9].
Because of the symmetry, two other magnetic domains
were observed, corresponding to the wave vectors
�1=4;�1=2; 0�, ��1=2; 1=4; 0�. One hundred twenty-three
magnetic reflections were collected in the three domains.
For the magnetic refinement an isotropic Cr3� magnetic
form factor was used, yielding a weighted R factor of
4.2% on the magnetic structure factors FM. This gives
(i) that the populations of the three domains are about the
same (34:8� 0:6, 33:0� 0:4, and 32:2� 0:4%
 and the
magnetic structure is collinear with the moments point-
ing along the c ( � X) direction; this agrees with the
expected transverse ordering for a FIMO. (ii) The ar-
rangement of the transverse magnetic moments within
one cell is represented in Fig. 1 (atoms labeled 1, 2, 3,
4). If we assume the moment amplitude to be constant (as
is usual for 3d ions), this motif propagates with the
sequence ���� along the 	110
 direction (for the first
domain), as shown in Fig. 1, and after refinement we
obtain that the AFM ordered transverse moment is
MX � 1:60	1
	B per Cr3� ion at H � 6 T. Considering
the black atoms in this figure, ferromagnetic correlations
between neighboring spins, i.e., frustration, are seen both
within the (a;b) plane and between the planes. The field
dependence (forH < 6 T) of the propagation wave-vector
component k � kX � kY and that of MX are displayed in
Fig. 2 (open and solid circles). These data were from scans
in the 	110
 direction across the strongest magnetic peak
	1� k; 1� k; 2
 with k� 0:25, for increasing and de-
creasing magnetic field H. When increasing (decreasing)
H, this peak could be detected from (down to)H � 1:5 T:
Hc1 is, then, slightly smaller than this value. Each scan
was well fitted by a Gaussian function, giving rise to an
accurate evaluation of both the integrated intensity, i.e.,
M2

X, and the wave-vector component k (see the inset of
Fig. 2(a) where the magnetic peak is recorded for the
same field value, H � 2:9 T, while H is increased or
decreased). In Cs3Cr2Br9, within the ordered phase, there
are both incommensurabilities and large hysteresis ef-
fects suggesting pinning [10]. For increasing H, the com-
mensurate ���� structure is reached atH � 5 T, while
for decreasing H the commensurate structure remains
locked down to H � 3 T. The parallel magnetization
MZ	H
 was measured both by neutrons from the ferro-
magnetic contribution appearing on top of the weak
nuclear Bragg peak (1; 1; 4) at H � 6 T [the open triangle
in Fig. 2(b)] and from SQUID at T � 100 mK in the full
field range (solid triangles).

Second, we report inelastic results. The same crys-
tal was mounted on the cold neutron triple axis spec-
trometer IN12 FZ/CEA-CRG at ILL, in a 6 T vertical
cryomagnet with a dilution insert. The measurements
were performed in the same experimental configura-
tion at T � 50 mK. The final wave vector kf was fixed
to various values between 1.07 and 1:55 �A�1, depend-
ing on the explored energy range and the energy resolu-
tion that was needed. Examples of the dispersion as a
177202-2
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function of QH;K � QH � QK (at QL � 2) are shown
in Fig. 3.

For H � 0 (open squares), a unique excitation branch
is observed, while three distinct branches are seen in the
ordered phase (solid circles for H � 3 T). The descrip-
tion proposed in Ref. [5] for H � 0 reproduces very well
the data (see solid line). From this fit, we obtain the
following exchange values: J � 1:03 meV for the intra-
dimer coupling, Jp � 0:054 and Jc � 0:039 meV for the
in-plane and out-of-plane interdimer interactions, re-
spectively, in agreement with Ref. [5]. We now focus
on the minima of the dispersions, i.e., the three energy
gaps. They always occur at the same wave-vector value
QoH;K � 0:27 r:l:u: (reciprocal lattice units), even above
Hc1 where the propagation vector component k varies
continuously from 0.29 down to 0.25 r.l.u. [see Fig. 2(a)].
The field dependence of these gaps, obtained from energy
scans performed at (0:27; 0:27; 2), is plotted in Fig. 4. The
inset shows such a scan recorded at H � 0 with the best
energy resolution (kf � 1:07 �A�1): a splitting, not de-
tected previously [5], is clearly observed [11]. It reveals
the presence of an additional anisotropy which can be
described by a single-ion term D	sXi 


2 (X � c) at each
Cr3� site. Such a term results in a splitting of the initial
dispersion. This effect can be accounted for by redefin-
ing for each branch two distinct effective intradimer
couplings [7]: J� � J� 0:8D and J� � J� 1:6D (for
s � 3=2 and D< 0). From the splitting at the mini-
mum of the dispersions, we evaluate D��0:01 meV.
With this value, the Zeeman splitting below Hc1 (solid
lines in Fig. 4) agrees also very well with the data. From
the lowest energy branch, the critical field is expected at
Hc1 � 1:5 T, in agreement with the diffraction result. As
mentioned above, for H > Hc1, three distinct branches
are still observed. The two upper branches agree roughly
with ‘‘Zeeman’’ behaviors: g	BH and 2g	BH with g � 2
(dotted lines). The evidence for a gap (Eg) on the lowest
energy branch above Hc1 is, however, a new result. It
shows that there is no massless Goldstone mode in the
FIMO phase of Cs3Cr2Br9. In fact, even near Hc1 the
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FIG. 3. Examples of dispersions for H � 0 and H � 3 T. The
solid line for H � 0 is a fit as in Ref. [5]. The dashed lines for
H � 3 T are guides to the eye.
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lowest energy gap does not vanish. The half-width
(0.05 meV) of the fitted Gaussian at the minimum gap
�0:11 meV is instrumental.

Including the single-ion anisotropy D, the
Hamiltonian for the spin dimers in Cs3Cr2Br9 is

H �
X
i

Jsia � sib �D	sX
2

ia � sX
2

ib 
 � g	BH	s
Z
ia � sZib
�

�
X
i;m

J0	sia � sma � sib � smb
; (1)

with J0 � Jp (Jc) for in- (out-of-)plane couplings. In
Eq. (1), the indices a and b refer to the two spins in
each dimer while the index m accounts for the interacting
spins surrounding each spin i (six in-plane and 2� 3 out-
of-plane couplings). Because of the spin value s � 3=2,
three distinct plateaus are, a priori, expected in the
magnetization curve of such a compound. They are ac-
tually observed in the parent compound Cs3Cr2Cl9, and
magnetic ordered phases are expected to precede each of
the three plateaus [12]. The situation is different in
Cs3Cr2Br9, where the magnetization constantly increases
from Hc1 � 1:3 T up to saturation (Hs � 26 T) without
intermediate plateaus [12]. This means that the three
FIMO phases in this compound overlap, giving rise to a
single FIMO phase, hereafter called the extended FIMO
phase. In general, a simple FIMO phase develops each
time a crossing occurs between two states of the isolated
dimers. In low field, H�Hc1, the crossing occurs be-
tween the singlet ground state j0i and the lowest Zeeman
split state j1;�1i (including anisotropy) of the initial
triplet state j1i. For a simple FIMO phase, an effective
Hamiltonian H eff can be derived by projecting Eq. (1)
onto these elementary states. One obtains a ' � 1

2
pseudospin Hamiltonian, which, for the initial s � 3=2
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FIG. 4. Field dependence of the energy gaps. The solid lines
describe the splitting below Hc1. Above Hc1, the dotted lines
are g	BH and 2g	BH. The dashed line describes the lowest
gap Eg (see text). Inset: H � 0 energy scan performed at
(0:27; 0:27; 2) with kf � 1:07 �A�1. The splitting signals the
presence of a small single-ion anisotropy [D in Eq. (1)]. The
slightly broader width of the upper mode indicates the possible
presence of small higher-order anisotropies.
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spin system, is given to first order as

H eff �
X
i;m

JXYeff 	'
X
i '

X
m � 'Yi '

Y
m
 � JYeff'

Z
i '

Z
m

� deff	'Xi '
X
m � 'Yi '

Y
m
 �

X
i

g	BHeff'Zi ; (2)

with JXYeff � 2M2J0, JZeff � J0	c21 � c2�1

2=2, deff �

�4M2J0c1c�1, and g	BHeff � g	BH	c
2
1 � c2�1
 � J�

J0	c21 � c2�1
=4� R2D. In these expressions, M �
oh1;�1jsXj0i � �

��������
5=2

p
, R � �2	1� 6c1c�1
=5, c1 and

c�1 account for the mixing of the initial states (no an-
isotropy): j1;�1i � c�1j1;�1io � c1j1; 1io, with c�1 �

(D=�	(D
2 � f	g	BH
2 � 	(D
2�1=2 � g	BHg2�1=2

and c1 � f	g	BH
2 � 	(D
2�1=2 � g	BHg=�	(D
2 �
f	g	BH
2 � 	(D
2�1=2 � g	BHg2�1=2, where ( �
2oh1;�1js2Xj1;�1io � 6=5. We note that the ratio
JZeff=J

XY
eff � 1=	4M2
 � 1=10 is much smaller than in the

s � 1=2 spin case [13]; i.e., for s � 3=2, the pseudospin
Hamiltonian is almost XY. More novel is the XY anisot-
ropy term deff . This anisotropy is induced by D, but it
occurs indirectly through the mixing coefficient c1c�1.
Note that higher-order anisotropies within the YZ hex-
agonal plane (see Fig. 4 caption) would renormalize
slightly the ratio JZeff=J

XY
eff and deff , but otherwise does

not affect the analysis. According to Eq. (2), in a simple
FIMO phase, one has an anisotropic quantum pseudo-
spin 1=2 XYZ model. For an extended FIMO phase,
as in Cs3Cr2Br9, the pseudospin description should give
the essential physics, but one expects deviations. We
now compare our data and predictions from Eq. (2). For
the ' spin system, we analyze the commensurate
���� structure of the FIMO phase. The effective cou-
plings in the mean-field approximation according to
the spin arrangement displayed in Fig. 1 (see the black
atoms) are hJXYeff i � �4	Jp � Jc=2
M

2 and hdeffi �
�4	Jp � Jc=2
M

2c1c�1. The calculated MZ and MX,
with MX � 2jMj

������������������������������
MZ	1�MZ


p
, are represented by

the solid lines in Fig. 2(b). The observed behaviors are
well explained qualitatively. Quantitatively, at H � 6 T,
the discrepancy between measurements and this simple
theory is �15% for MX. Such a correction is what one
expects when one compares the results for a simple and an
extended FIMO, i.e., when the contributions from the
higher states are taken into account [14]. Extrapolation
of these curves to lower fields predicts a reasonable
critical value, Hc1 � 1:2 T.

A FIMO corresponds to an AFM spin-flop state. A
small anisotropy, such as deff in Eq. (2), breaks the axial
symmetry responsible for the Goldstone mode and opens
a gap in the XY fluctuations. By Holstein-Primakoff
transformation on the pseudospin Hamiltonian, extend-
ing the standard treatment [15] to include deff , gives

E g � 4'2
X

����������������������
hJXYeff ihdeffi

q
� 16'2

X	Jp � Jc=2
M
2

���������������
jc1c�1j

q
;

(3)
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where 'X � MX=	2jMj
 is the ordered transverse com-
ponent of the ' � 1=2 spins (0<'x < ' � 1=2
. The
prediction from Eq. (3) applies to a simple FIMO. In the
case of an extended FIMO, one expects additional con-
tributions resulting from the mixing of states. An ‘‘am-
plification’’ factor is therefore to be expected. As shown
by the dashed line in Fig. 4, with a multiplying factor �5,
Eq. (3) provides a quite good agreement with the data.
This factor is surprisingly large and suggests that the
dynamics is much more sensitive to the extended nature
of the FIMO than the statics.

At H � Hc1, a FIMO transition is expected to be of
second order. The transition here is complicated by the
frustration: the magnons that soften are incommensurate
and degenerate in momentum space [5]. The initial order-
ing vector appears away in wave-vector space from the
minimum gap, which, remarkably, remains nonzero at
the transition. The complexity seen in our results as to
the evolution of the ordering vector towards a locked-in
commensurate value with collinear spins, is, we believe,
due to interplay of quantum fluctuations, enhanced by the
frustration of the hexagonal lattice and the anisotropy.
Even in the commensurate phase a small anisotropy,
since it opens a gap, changes the nature of the magnon
condensation.

We have observed new and peculiar features at the
onset of field-induced magnetic order in Cs3Cr2Br9.
They should stimulate new developments concerning
simple versus extended FIMO, incommensurability, and
hysteretic behavior.
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