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Staggered Flux Vortices and the Superconducting Transition in the Layered Cuprates
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We propose an effective model for the superconducting transition in the high-Tc cuprates motivated
by the SU(2) gauge theory approach. In addition to variations of the superconducting phase we allow for
local admixture of staggered flux order. This leads to an unbinding transition of vortices with a
staggered flux core that are energetically preferable to conventional vortices. Based on parameter
estimates for the two-dimensional t-J model we argue that the staggered flux vortices provide a way to
understand a phase with a moderate density of mobile vortices over a large temperature range above Tc
that yet exhibits otherwise normal transport properties. This picture is consistent with the large Nernst
signal observed in this region.
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The nature of the pseudogap phase of the (hole-) under-
doped high-Tc cuprates is one of the central questions of
correlated electron physics. A number of scenarios are
successful in capturing certain aspects of the problem. Yet
many theories face substantial difficulties when it comes
to combining the large number of experimentally estab-
lished anomalies of the underdoped state. A new chal-
lenge in this context has been set out recently by the
Nernst effect measurements in underdoped samples [1].
In these experiments a thermal gradient is applied in the
copper-oxide planes. In the presence of a small out-of-
plane magnetic field, a voltage drop perpendicular to the
magnetic field and thermal gradient is observed. This
voltage is interpreted as the phase slip signal arising
from vortices moving from hot to cold. Thus the Nernst
effect reveals the existence of substantial superconduct-
ing (SC) short range correlations over a sizable region,
starting significantly below the pseudogap temperature
T�, but extending up to temperatures high above the low
Tcs of underdoped samples.

At first sight the observation of vortices above Tc fits
well into a scenario [2] where SC phase fluctuations
destroy the long range coherence, and short range pairing
correlations survive up to much higher temperatures. In
view of the small superfluid weight of underdoped sys-
tems it is conceivable that the SC transition is driven by a
vortex unbinding similar to the XY transition, with Tc
disappearing like the doping x for x! 0. However a
simple phase fluctuation scenario faces the following
problem. The creation of a vortex comes at a price, as
the SC order parameter goes to zero in the vortex core
and condensation energy is lost. In disordered films of
conventional superconductors, where a Berezinskii-
Kosterlitz-Thouless (BKT) transition can be observed,
the mean-field (MF) critical temperature and the vortex
unbinding temperature are similar, and due to the mean
free path ‘ entering the effective coherence length 	 ���������
	0‘

p
(with 	0 � vF=�), the vortex core energy �	2�2=

"F becomes small near Tc, as � decreases faster for T !
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is limited and the vortices can be cheap. In contrast
with that the high-Tc cuprates are in the clean limit and
for underdoped samples the gap magnitude remains
large up to temperatures far above the SC transition.
Hence the vortex core energy Ec for bringing the gap
magnitude down to zero inside the vortex would nor-
mally be expected to be huge ("F in BCS theory and
of order J in our case), and only exponentially few of
these expensive vortices could be created above the
small Tc in underdoped samples. Then we would ex-
pect that the transport properties of the pseudogap state
resemble those of a flux-flow (FF) phase. Transport re-
sembling the normal state occurs only at high tempera-
tures �Ec when the vortices proliferate and overlap.
However this picture is inconsistent with experiments.
These show that above a limited fluctuation regime close
to Tc the in-plane transport looks rather normal and signs
of FF conductivity do not extend far above Tc — contrary
to the Nernst signal. Apparently the conductivity �n
due to a significant number of quasiparticles domi-
nates over the FF conductivity �FF in the total conduc-
tivity � � �n � �FF. Thus one has to explain two
things: where the normal excitations come from and
why the FF contribution is small. �FF can be estimated
to be / �=nV , where nV is the density of vortices either
forced in by a magnetic field in the mixed state or
generated thermally above the BKT transition. � is the
friction coefficient for the vortex motion. The FF con-
ductivity is small if� is small and nV is not. Here we show
that our model produces a moderately large nV even for
underdoped samples with low Tc. We also present an
approximate calculation that yields a finite density of
normal excitations. We will not attempt to calculate �
in this work. An effect that may reduce � is the observed
[3] small low-energy density of states in the vortex cores.
This translates into small dissipation due to vortex mo-
tion and thus small �FF. Note that � cannot become
arbitrarily small if we want �n to dominate the conduc-
tivity, as the quasiparticles responsible for �n will cause
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moderately large nV at temperatures above the limited
fluctuation regime near Tc.

An extreme way to normal transport properties just
above Tc is to make the vortices very dense, so that they
overlap just above Tc. Then it is hard to understand why
the vortex Nernst signal persists to temperatures so high
above Tc. A theory considering purely Gaussian SC fluc-
tuations [4] gave good agreement for the Nernst effect in
overdoped and optimally doped samples. However the
description of underdoped samples becomes problematic
and an additional suppression of Tc had to be invoked.

Thus neither very few and expensive nor too many and
too cheap vortices seem to match the experimental pic-
ture [5]. What is needed is a theory which produces a core
energy of order Tc rather than J. In other words we need
to decrease the core energy by placing in the vortex core
another nonsuperconducting state that is nearby in en-
ergy. There are several proposals in the literature [6] for
such a cheap vortex core, mainly emphasizing the vicin-
ity of the d-wave superconductor to other ordered states.
Here we study the possibility of a staggered flux (SF) state
inside the vortex [7,8]. This scenario has the advantage
that it emerges naturally from the SU(2) invariance, i.e.,
the Mott insulating nature of the undoped state. Note that
the vicinity to the Mott state is also responsible for the
small superfluid stiffness �s � x.

The idea that vortices in the underdoped system have
SF cores ties in with a more general picture of the pseu-
dogap state. This is derived from the SU(2) gauge theory
for the t-J model and views the pseudogap regime as a
thermally disordered state, where the system fluctuates
between various types of short range order corresponding
to mean-field states that would all become identical at
zero doping. The two most prominent correlations are
d-wave superconductivity — determining the ground
state as soon as the other fluctuations freeze out at low
T— and SF correlations. The latter represent, in addition
to phase fluctuations of the SC order parameter, the lowest
lying fluctuations around the SC state with the largest
spectral weight [9]. The scattering of quasiparticles with
these SF fluctuations may be related to the partial loss of
the quasiparticle peaks in the pseudogap state [10].

Some of the ideas presented here carry over to other
types of cheap vortices. Indeed there are indications [11]
for antiferromagnetic (AF) ordering at low T in the
vortex cores of optimally doped Tl compounds, and it is
quite likely that the vortex core may contain both SF and
AF correlations [12]. The focus on SC and SF correlations
is an attempt to concentrate on the main tendencies sug-
gested from the SU(2) approach. The SF state has the
advantage that it has a gap structure similar to the d-wave
superconductor and naturally explains the gap in the core.
Other correlations, such as AF tendencies, may be viewed
as additional instabilities, which naturally coexist with
the SF order for small x.

Recently Ivanov and Lee [13] calculated the energy
differences between SF and d-wave SC states using the
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Gutzwiller projection technique. Together with the com-
puted superfluid stiffness this provides an estimate for the
energy of a SF vortex. In Ref. [13] the vortex core turns
out to be very small, but on the other hand the core state,
taken to be a pure SF state, is likely to be too high in
energy, and a better core state will increase the size of the
core again. Keeping in mind these uncertainties and for
the lack of better parameters we use the numbers of
Ref. [13] as input for a generalized XY model.

Let us begin with the SU(2) MF theory [9]. Here we are
interested in low temperatures. Hence we assume that the
bosons carrying the electronic charge are condensed. The
Hamiltonian for the fermionic spin degrees of freedom
fi", fi# on the lattice sites i reads

Hf �
J
2

X
hiji

�
fi"
fyi#

�
y
�
���Wij �ij

��
ij ��Wij

��fj"
fyj#

�
: (1)

� contains the hopping and the constraint field a0;3.
Next we allow for local admixtures of the SF amplitude
in exchange for the SC pairing, described by an angle �i
[9], and fluctuations of the SC phase,  i. The SF ampli-
tude on the bond ij is given by Wij � i�0�1�ix�jy�
cos��i � �j�=2� and the pairing amplitude is �ij �
�1�iy�jy�0 sin��i � �j�=2� exp�i i �  j�=2�. The pure
superconductor has � � "=2, while the two degenerate
SF states have � � 0 and � � ".

Now consider an effective Hamiltonian for  i and �i,

H �
X
hiji

�sx; �i; �j� cos i �  j�

�
X
i=2VP

m�cos2�i � K
X
hiji

�i � �j�2 �
X
VP

HV: (2)

The first term is the phase stiffness of the SC phase that
depends on doping x and the local �. The second term is a
mass term for � that takes into account the energy differ-
ence between SF and SC state outside the vortex pla-
quettes (VP). The third term is a gradient term for the �
variation. The last term is the vortex core energy, HV �P
i2VPmnsin

6 ����m��. The sum is over the four sites on
each of the VP. Here �ij is assumed to vanish and accord-
ing to Eq. (1), � now describes an interpolation between
the SF state (� � 0; ") and the zero flux state (� � "=2)
which is a Fermi liquid. As discussed earlier, the Fermi
liquid core is expected to be costly and the energy costs of
the SF state and the Fermi liquid state are m� and m� �
mn, respectively. The specific � dependence chosen forHV
comes from the MF theory for uniform �, and ��� is the
average �i over the four sites of theVP. Requiring that the
vortex core area 4a2 equals the vortex size "	2 of a pure
SF vortex in the microscopic calculation in Ref. [13], we
obtain that the lattice constant of Eq. (2) is slightly larger
than the one of the underlying t-J model with a scale
factor of �1:2. We assume that the variation of the vortex
core size can be neglected at small x and low T.
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FIG. 1 (color online). Snapshot of the simulation for x � 0:06
and T � 0:09J � 2Tec . Left panel: Vortices (circles) and phase
angles (arrows). The arrow length denotes the local SC ampli-
tude. The shaded squares indicate sites with large SF admix-
ture, j cos�ij > 0:9. The average value of j cos�j in the vortex
cores is 0.7 (1 for the pure SF state). Right panel: cos�i.
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FIG. 2 (color online). Left panel: Helicity modulus � versus
temperature T for dopings x � 0:06 and x � 0:12, averaged
over 300 100� 100 samples. The temperature where � goes
to zero is an upper bound for the SC transition temperature
Tc. The dashed line has the slope 2=". Right panel: Vortex
density log10nV per site vs T and x. The dotted line is
T � �s � 0:75xJ.
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In principle, (2) can be obtained from the MF theory as
in Ref. [9] by integrating out the fermions and neglecting
other collective modes with less spectral weight at low
energies. Here however where possible we use parameters
obtained by the Gutzwiller variational treatment of
Ref. [13]. With t=J � 3, this gives �sx; � � "=2� �
0:75xJ, m� � 0:33xJ, and mn � 0:25� x�J=2. The �
dependence of �s is obtained numerically from MF
theory which shows a rapid linear increase from zero
when � deviates from 0 or ". The coefficient K is difficult
to extract from the collective mode spectrum [9], as the
�-mode is not simply quadratic around ";"�.
Nevertheless its q dependence is weak and less than that
of the SC phase  and vanishes for x! 0. Thus we
estimate K � �s=2. Other choices give similar results.

In the scaling theory for the BKT transition [14] the
vortex core energy is assumed to be large compared to the
temperature such that the fugacity y � exp�Ec=T� can
be used as a small parameter. In the limit y!0 the tran-
sition occurs at Tc � "�s=2. A nonzero fugacity y > 0
leads to a reduction of Tc from this upper bound by
roughly "2�sy. With the parameters above the core en-
ergy of a single ideal SF vortex is Ec � 0:75"xJ or twice
the maximal Tmax

c � "�s=2. This leads to a reduction of
the critical temperature down to Tc � 1:06�s.

The model described by Eq. (2) can be simulated with
Monte Carlo methods. To estimate Tc we calculate the
helicity modulus � which [15] measures the rigidity with
respect to a phase gradient in the system. � vanishes
above the SC transition: in BKT theory it jumps to zero
at Tc, the height of the jump being 2Tc=", independent of
the core energy [16]. We also measure the average � varia-
tion inside and outside the vortex cores and how the
number of vortices depends on doping and temperature.

A snapshot from the Monte Carlo is shown in Fig. 1 for
a sample above Tc.We observe two relatively well isolated
and other less separated vortices. The SC phase  i is
disordered but exhibits remnants of short range order.
For T � 0:09J and x � 0:06, � varies rapidly in space
due to its light mass m� < T and small gradient terms.
Hence there is a significant amount of SF admixture
reducing the SC pairing amplitude locally even outside
the vortex cores (see shaded areas in Fig. 1). Outside the
vortices, the average SF amplitude is hj cos�ji � 0:3
(compared to 1 for the pure SF state). Inside the vortex
cores it is strongly enhanced, but not maximal
(hj cos�ji � 0:7 for the sample shown, see also Fig. 3).
In the left plot of Fig. 2 we show the helicity modulus �
for two dopings x and a 100� 100 system. � goes to zero
above a doping-dependent temperature, but does not ex-
hibit the universal jump of the XY model [15,16]. This is
clearly a finite-size effect which is exacerbated by the
small vortex density and which does not occur in the XY
model where Ec � 0. An estimate for the true Tc is the
intersection of the data with the line 2T=". This is based
on the jump criterion ���Tc � "=2 [16]. With that we
arrive at Tec � 0:75xJ� �s. A numerical bound is Tc �
177002-3
xJ. In a d-wave superconductor thermally excited nodal
quasiparticles lead to an additional reduction of �s that is
not included here. We expect however that this does not
affect the nature of the SC transition.

The temperature and doping dependence of the vortex
density nV is summarized in the right plot of Fig. 2. The
onset temperature for a finite nV is an increasing function
of x, approximately given by TV � �s. In the underdoped
system there is a wider temperature range, starting at the
BKT Tc and extending up to the mean field Tc � 0:18J
where nV continues to increase and does not saturate.
Thus the vortices do not overlap and there is the possi-
bility that SC phase coherence is still well defined locally
in a range above Tc. For x � 0:06 the phase correlation
length 	 is �7 lattice spacings a at T � 2Tec . This is in
contrast with the normal XY model where at 2Tc, 	 � a,
and on average there is a vortex on every 5th site. We
emphasize that in our model the phase fluctuations are not
the only source of disorder. This can be seen in the right
panel of Fig. 1. The SF fluctuations are not limited to the
vortex cores and lead to sizable amplitude fluctuations as
well. Thus the proximity to the Mott state gives rise to the
low-energy scale for SF fluctuations and is responsible for
177002-3
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FIG. 3 (color online). Left panel: SF admixture inside
(dashed line) and outside (solid line) the vortices vs tempera-
ture T for x � 0:06. Right panel: Density of states for x � 0:06
and T � 0:01; 0:05; 0:13�J, averaged over 25 samples (sizes
40� 40 up to 48� 48).
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both phase and amplitude fluctuations proliferating at
comparable temperature scales.

We now address the electronic excitations. At finite
doping the bulk SF state has small Fermi pockets. It is
natural to expect that a state which fluctuates between a
superconductor with gap nodes and a SF state will pro-
duce a finite density of states (DOS) at low energies.When
we restrict the considerations to static configurations, we
can calculate the quasiparticle spectrum of Eq. (1) on a
finite system and average over many configurations of
fluctuations. Results are shown in Fig. 3. The DOS ex-
hibits a suppression for all T below the mean-field tran-
sition at T � 0:18J, but the gap fills in when T is increased
through the SC transition. The local DOS is inhomoge-
neous, but is not simply correlated with or confined to the
positions of vortices or regions of higher SF amplitude.
These results share some aspects with a recent work by
Eckl et al. [17] who considered disordering the d-wave
superconductor by phase fluctuations. In their model the
vortex cores are conventional and the core energy is zero
by construction. Our generalized model accommodates
both cheap vortices with SF core and energetically more
expensive vortices with Fermi liquid core. Our calcula-
tion shows that already at the BKT Tc there is a finite
number of quasiparticle excitations at low energies, and it
is likely that the conductivity will be dominated by these
normal excitations. The quasiparticle contribution to the
Nernst signal however is small [1] and the vortex contri-
bution will dominate at low T.

In conclusion, we have presented a simple model, mo-
tivated by the SU(2) approach for the high-Tc cuprates,
that describes the superconducting transition as an un-
binding transition of vortices with staggered flux core.
Using parameter estimates from projected wave functions
and the SU(2) mean-field theory it allows us to under-
stand the occurrence of a moderate vortex density even
for underdoped systems with low Tc. The vortex density
is determined by an energy scale that is closely related to
the energy difference between the SF and the d-wave SC
state and that disappears towards zero doping, making
the vortices relatively cheap. However there is a wider
temperature range above Tc where the vortices are suffi-
ciently dilute and do not overlap such that we expect that
the superconducting phase coherence stays intact locally.
This is in accordance with the interpretations of the
Nernst effect measurements [1]. Phase and SF (i.e., am-
plitude) fluctuations lead to a filling in of the gap in the
density of states at small energies already near the super-
conducting Tc. This could account for the normal-looking
in-plane transport of the pseudogap phase which onsets
just above the superconducting transition. A full analysis
of this issue requires a calculation of the flux-flow resis-
tivity in the fluctuating state. Although our approach
involves rather strong simplifications and approximations
we believe that it describes a way to understand the
simultaneous occurrence of normal transport behavior
177002-4
(e.g., in the resistivity) and strong SC fluctuations, as
witnessed by the vortex Nernst effect.
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